精英家教网 > 初中数学 > 题目详情

【题目】某水果店在两周内,将标价为10/斤的某种水果,经过两次降价后的价格为8.1/斤,并且两次降价的百分率相同.

1)求该种水果每次降价的百分率;

2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1/斤,设销售该水果第x(天)的利润为y(元),求yx1≤x≤14)之间的函数关系式,并求出第几天时销售利润最大?

【答案】110%;(2 ,第10天利润最大

【解析】

1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;

2)根据两个取值先计算,当1≤x≤7时,当8≤x≤14时,由利润=(售价-进价)×销售量-费用列函数关系式,并根据增减性求最大值,做对比.

解:(1)设该种水果每次降价的百分率是x

101x28.1

x10%x190%(舍去),

答:该种水果每次降价的百分率是10%

2)当1≤x≤7时,第1次降价后的价格:10×110%)=9

y=(94.1)(803x)﹣(40+3x

=﹣17.7x+352

∵﹣17.70

yx的增大而减小,

∴当x1时,y有最大值,y=﹣17.7×1+352334.3(元),

8≤x≤14时,第2次降价后的价格:8.1元,

y=(8.14.1)(120x)﹣(3x264x+400

=﹣3x2+60x+80

=﹣3x102+380

∴当x10时,y有最大值,y380(元),

综上所述,yx1≤x15)之间的函数关系式为:

10天的利润最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

1)求yx之间的函数表达式;

2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,RtOAB的直角顶点Bx轴的正半轴上,点A在第一象限,反比例函数yx0)的图象经过OA的中点C.交AB于点D,连结CD.若ACD的面积是2,则k的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAB为⊙O的直径,AB=10AC=6,连结OC,弦AD分别交OCBC于点EF,其中点EAD的中点.

1)求证:∠CAD=CBA

2)求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以BC为直径的圆分别交边AC、ABD、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是(  )

A. BDAC B. AC2=2ABAE C. ADE是等腰三角形 D. BC=2AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON =ACB = 90°AC = BCAB =5ABC顶点AC分别在ONOM上,点DAB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线x轴交于A-10),B30)两点,与y轴交于点C

(1)求该抛物线的解析式;

(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m0m3),连接CDBDBCAC,当△BCD的面积等于△AOC面积的2倍时,求m的值;

(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以BCMN为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一批成本为每件40元的商品,若商店按单价不低于成本价,且不高于70元销售,且销售单价为正整数,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间的关系如表:

销售单价x/

40

50

60

70

每天的销售量y/

140

120

100

80

(1)请你认真分析表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示yx之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式和自变量的取值范圈.

(2)销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验探究:

(1)如图1,对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BNMN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MNBM的数量关系,写出折叠方案,并结合方案证明你的结论.

查看答案和解析>>

同步练习册答案