精英家教网 > 初中数学 > 题目详情

【题目】如图,设△ABC的两边ACBC之和为a,MAB的中点,MC=MA=5,则a的取值范围是_____

【答案】10<a≤10

【解析】

根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.

MAB的中点,MC=MA=5,

∴△ABC为直角三角形,AB=10;

a=AC+BC>AB=10;

AC=x、BC=y.

xy=

x、y是一元二次方程z2-az+=0的两个实根,

∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10

故答案为:10<a≤10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数

【答案】38° 边数13

【解析】试题分析根据多边形的内角和公式(n-2)180°可知,多边形的内角和是180°的倍数,然后列式求解即可.

试题解析:设多边形的边数是n,加的外角为α,则

(n-2)180°+α=2018°,

α=2378°-180°n,又0<α<180°,

0<2378°-180°n<180°,

解得: n

n为正整数,

可得n=13,

此时α=38°满足条件

这个外角的度数是38°,它的13边形

【点睛】本题考查了多边形的内角和公式,利用好多边形的内角和是180°的倍数是解题的关键.

型】解答
束】
22

【题目】已知, (1) (2) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在边长为2的正三角形ABC中,EFG分别为AB

ACBC的中点,点P为线段EF上一个动点,连接BPGP,则△BPG的周长的最小值是

_ ▲

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中抛物线y=ax2+4x+cy轴交于点A05),x轴交于点EBB坐标为(50).

1)求二次函数解析式及顶点坐标

2)过点AAC平行于x交抛物线于点CP为抛物线上的一点(点PAC上方)PD平行于y轴交AB于点D问当点P在何位置时四边形APCD的面积最大?并求出最大面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知坐标原点为,点,将绕原点顺时针旋转后,的对应点的坐标是(

A. (2,-1) B. (-2,1) C. (1,-2) D. (-1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州漆器名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

(1)求之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥ACAB于点E,若AB=8,则DE=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线l1x轴、y轴分别交于点A30)、B02).

1)如图2,点MAB的中点,过点MMEx轴,MFy轴,垂足分别为EF.则点M 的坐标为

2)如图3,直线l2经过点B,且与l1互相垂直,过点C0,﹣1)作CDy轴,交l2于点D.则以直线l2为图像的函数表达式为

3)图1中,在x轴上是否存在点P,使得APB是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;

(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?

查看答案和解析>>

同步练习册答案