【题目】一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数.
【答案】38° ; 边数13
【解析】试题分析:根据多边形的内角和公式(n-2)180°可知,多边形的内角和是180°的倍数,然后列式求解即可.
试题解析:设多边形的边数是n,加的外角为α,则
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n为正整数,
可得n=13,
此时α=38°满足条件,
答:这个外角的度数是38°,它的13边形.
【点睛】本题考查了多边形的内角和公式,利用好多边形的内角和是180°的倍数是解题的关键.
【题型】解答题
【结束】
22
【题目】已知, 求 (1) ; (2) .
科目:初中数学 来源: 题型:
【题目】已知13 = 1 =×12×22, 13+23=9=×22×32,13 + 23 + 33 = 36 =×32×42, …,按照这个规律完成下列问题:
(1)13+23+33+43+53=________=× ( )2 × ( )2
(2)猜想:13+23+33+…+n3=___________
(3)利用(2)中的结论计算:(写出计算过程)
113+123 + 313+143 + 153+163 + ……+393+403.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,入射角∠ODE与反射角∠ADC相等,则∠DEB的度数是( )
A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件中,不能证明△ABD≌△ACD的是( )
A. BD=DC ,AB=AC B. ∠ADB=∠ADC,∠BAD=∠CAD
C. ∠B=∠C, BD=DC D. ∠B=∠C ,∠BAD=∠CAD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
利用网格点和三角板画图或计算:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为______.
【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)8.
【解析】解:(1)如图所示: 即为所求;
(2)如图所示:CD就是所求的中线;
(3)如图所示:AE即为BC边上的高;
(4).
故的面积为8.
因此,本题正确答案是:8.
【题型】解答题
【结束】
24
【题目】如图,⊿ABC中,∠A=40°,∠ACB=104°,BD为AC边上的高,BE是⊿ABC的角平分线,求∠EBD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y(元)与用水量x(吨)之间的函数关系.
(1)小明家五月份用水8吨,应交水费______ 元;
(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小康中学七年级(1)班学生进行拔河比赛分组,若每组 7 人,则有 2 人分不到组里;若每组 8 人,则最后一组差 4 人,若设计划分 x 组,则可列方程为( )
A.7 x 2 8x 4B.7 x 2 8x 4
C.7 x 2 8x 4D.7 x 2 8x 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com