精英家教网 > 初中数学 > 题目详情

【题目】如图在平面直角坐标系中抛物线y=ax2+4x+cy轴交于点A05),x轴交于点EBB坐标为(50).

1)求二次函数解析式及顶点坐标

2)过点AAC平行于x交抛物线于点CP为抛物线上的一点(点PAC上方)PD平行于y轴交AB于点D问当点P在何位置时四边形APCD的面积最大?并求出最大面积

【答案】(1)y=﹣x2+4x+5,顶点坐标为(2,9);(2)当P( )时,S有最大值为

【解析】试题分析:(1)用待定系数法求抛物线解析式,并利用配方法求顶点坐标;
(2)先求出直线AB解析式,设出点P坐标(x,-x2+4x+5),建立函数关系式S四边形APCD=-2x2+10x,根据二次函数求出极值;可得P的坐标.

试题解析:1)把点A05),点B坐标为(50)代入抛物线y=ax2+4x+c中,
得: ,解得:

∴抛物线的解析式为:y=-x2+4x+5=-x-22+9
∴顶点坐标为(29);
2)设直线AB的解析式为:y=mx+n
A05),B50),

解得:

∴直线AB的解析式为:y=-x+5
Px-x2+4x+5),则Dx-x+5),
PD=-x2+4x+5--x+5=-x2+5x
∵点C在抛物线上,且纵坐标为5
C45),
AC=4
S四边形APCD=ACPD=×4-x2+5x=-2x2+10x=-2x-2+
-20
S有最大值,
∴当x=时,S有最大值为
此时P ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与X轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.

(1)求抛物线对应的函数解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ΔABC中,AD是高,AEBF是角平分线,它们相交与点O,∠BAC=50°,∠C=70°,则∠DAC的度数为__________,∠BOA的度数为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是________边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、ACD、E两点,连接DE,则线段DE长度的最大值为(  )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设△ABC的两边ACBC之和为a,MAB的中点,MC=MA=5,则a的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化工材料经销公司购进一种化工原料若干千克,价格为每千克30元。物价部门规定其销售单价不高于每千克60元,不低于每千克30元。经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100。在销售过程中,每天还要支付其他费用450元。

(1)求出y与x的函数关系式,并写出自变量x的取值范围。

(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式。

(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB30°MN分别是OAOB上的定点,PQ分别是边OBOA上的动点,如果记AMPONQ,当MPPQQN最小时,则的数量关系是_________________.

查看答案和解析>>

同步练习册答案