【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF =∠BAE.
(1)求证:四边形AEFD是平行四边形;
(2)若DF=3,DE=4,AD=5,求CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.
求该公司投递快件总件数的月平均增长率;
如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,
(1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °.
(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系( 必须写出推理的主要过程,但每一步后面不必写出理由);
(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在口ABCD中,点E、F是对角线BD上的两点,且BF=DE,连接AE、CF.
.求证:AE//CF.
【答案】证明见解析
【解析】试题分析:根据平行四边形的性质可得AD=CB,∠ADE=∠CBF,利用SAS判定△ADE≌△CBF,根据全等三角形的性质即可得∠AED=∠BFC,所以AE∥CF.
试题解析:
∵四边形ABCD是平行四边形,
∴AD=CB,AD∥CB,
∴∠ADE=∠CBF,
又∵DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠BFC,
∴AE∥CF.
【题型】解答题
【结束】
22
【题目】如图,已知是 的直径,CD与 相切于C, .
(1)求证:BC 是的平分线.
(2)若DC=8, 的半径OA=6,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.
(1)求这两个函数的表达式;
(2)求△AOB的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.
(1)求抽取员工总人数,并将图补充完整;
(2)每人所创年利润的众数是 ,每人所创年利润的中位数是 ,平均数是 ;
(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的倍少人,每个工人平均每天可以生产螺丝个或者螺母个
(1)该车间有男生、女生各多少人?
(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张平行四边形纸片ABCD中,画一个菱形,甲、乙两位同学的画法如下:甲:以B,A为圆心,AB长为半径作弧,分别交BC,AD于点E,F,则四边形ABEF为菱形;乙:作∠A,∠B的平分线AE,BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形;关于甲、乙两人的画法,下列判断正确的是( )
A. 仅甲正确B. 仅乙正确
C. 甲、乙均正确D. 甲、乙均错误
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com