精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙O,点IABC的内心,∠AIC=124°,点EAD的延长线上,则∠CDE的度数为(  )

A. 56° B. 62° C. 68° D. 78°

【答案】C

【解析】

由点IABC的内心知∠BAC=2IAC、ACB=2ICA,从而求得∠B=180°﹣(BAC+ACB)=180°﹣2(180°﹣AIC),再利用圆内接四边形的外角等于内对角可得答案.

∵点IABC的内心,

∴∠BAC=2IAC、ACB=2ICA,

∵∠AIC=124°,

∴∠B=180°﹣(BAC+ACB)

=180°﹣2(IAC+ICA)

=180°﹣2(180°﹣AIC)

=68°,

又四边形ABCD内接于⊙O,

∴∠CDE=B=68°,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市中考必须在历史、地理、生物三门学科(分别用L、D、S表示)中随机抽考一门进行升学考试.

(1)用列举法写出连续两年抽考的情况;

(2)求连续两年抽到相同学科进行升学考试的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC

(1)求证四边形OABC是菱形;

(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.

①当OP:PA=3:2时,求点P的坐标;

②点Q在直线1上,在直线l平移过程中,当COQ是等腰直角三角形时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,RtABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.

解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于ADBD的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若ACBC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).

(1)求经过A,B,C三点的抛物线的解析式;

(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 O ABC 的边 AB 上一点,以 OB 为半径的O BC 于点 D,过点 D 的切线交 AC 于点 E,且 DEAC

(1)证明:ABAC

(2) ABcmBC=2cm,当点 O AB 上移动到使O 与边 AC 所在直线相切时O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于AB两点,抛物线y=x2+bx+c经过AB两点,点C是抛物线与x轴的另一个交点(与A点不重合).

1)求抛物线的解析式;

2)求ABC的面积;

3)在抛物线的对称轴上,是否存在点M,使ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD内一点,点E到点ABD的距离分别为12,将ADE绕点A旋转至ABG,连接AE,并延长AEBC相交于点F,连接GF,则BGF的面积为_____

查看答案和解析>>

同步练习册答案