【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,点P是AB边上的一个动点。过点P作AB的垂线交AC边于点D,以PD为边作∠DPE=60°,PE交BC边于点E。
(1)以点D为AC边的中点时,求BE的长
(2)当PD=PE时,求AP的长;
(3)设AP的长为x,四边形CDPE的面积为y,求出y与x的函数解析式及自变量的取值范围。
科目:初中数学 来源: 题型:
【题目】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是合同三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°.下列各组合同三角形中,是镜面合同三角形的是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过A(-1,0)、B(3,0)两点的抛物线交y轴于点C,其顶点为点D,设△ACD的面积为S1,△ABC的面积为S2.小芳经探究发现:S1︰S2是一个定值.这个定值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的例题:
解方程
解:(1)当x≥0时,
原方程化为x2 – x –2=0,
解得:x1=2,x2= - 1(不合题意,舍去)
(2)当x<0时,
原方程化为x2 + x –2=0,
解得:x1=1,(不合题意,舍去)x2= -2
∴原方程的根是x1=2, x2= - 2
(3)请参照例题解方程
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△AOP为等边三角形,A(0,2),点B为y轴上一动点,以BP为边作等边△PBC,延长CA交x轴于点E.
(1)求证:OB=AC;
(2)∠CAP的度数是;
(3)当B点运动时,猜想AE的长度是否发生变化?并说明理由;
(4)在(3)的条件下,在y轴上存在点Q,使得△AEQ为等腰三角形,请写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com