精英家教网 > 初中数学 > 题目详情

【题目】如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2 , 当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是

【答案】3
【解析】解:如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,
利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,
∵线段AB=10,AC=BD=2,当P与C重合时,
以AP、PB为边向上、向下作正方形APEF和PHKB,
∴AP=2,BP=8,
则O1P= ,O2P=4
∴O2P=O2B=4
当P′与D重合,则P′B=2,则AP′=8,
∴O′P′=4 ,O″P′=
∴H′O″=BO″=
∴O2O″=4 =3
故答案为:3

根据正方形的性质以及勾股定理即可得出正方形对角线的长,进而得出线段O1O2中点G的运动路径的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某同学做一道数学题已知两个多项式ABB=3x2y-5xyx+7,试求AB这位同学把AB看成AB结果求出的答案为6x2y+12xy-2x-9.

(1)请你替这位同学求出的正确答案

(2)x取任意数值A-3B的值是一个定值y的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3 cm,则弦AB的长为(  )

A.9cm
B.3 cm
C.
cm
D.
cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.

(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2 . 在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.

(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=﹣n始终保持相切,则n=(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于 EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④SADH= S四边形ABCH
其中正确的有( )

A.①②③
B.①③④
C.②④
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t(秒)

0

0.2

0.4

0.6

0.8

1.0

1.2

行驶距离s(米)

0

2.8

5.2

7.2

8.8

10

10.8

假设这种变化规律一直延续到汽车停止.

(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1 , t2(t1<t2)时,对应s的值分别为s1 , s2 , 请比较 的大小,并解释比较结果的实际意义.

查看答案和解析>>

同步练习册答案