【题目】如图(1),平面直角坐标系中,直线y=与x轴、y轴分别交于点B、D,直线y=与x轴、y轴分别交于点C、E,且两条直线交于点A.
(1)若OH⊥CE于点H,求OH的长.
(2)求四边形ABOE的面积.
(3)如图(2),已知点F(﹣ ,0),在△ABC的边上取两点M、N,是否存在以点O,M,N为顶点的三角形与△OFM全等,且两个三角形在边OM的异侧?若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.(温馨提示:若点A(x1,y1),点B(x2,y2),则线段AB的中点坐标为(,).
【答案】(1);(2);(3)满足条件的点M坐标为(﹣, )或(﹣,)或(﹣, )或(0,3).
【解析】
(1)利用面积法:×CE×OH=×OC×OA即可解决问题;
(2)求出A、E、B、A的坐标,利用分割法即可解决问题;
(3)分四种情形分别求解即可解决问题.
(1)∵直线y=与x轴、y轴分别交于点C、E,
∴C(﹣4,0),E(0,3),
∴OC=4,OE=3,
∴EC=,
∵OH⊥CE,
∴×CE×OH=×OC×OA,
∴OH==.
(2)如图1中,连接OA.
∵直线y=与x轴、y轴分别交于点B、D,
∴D(0,4),B(3,0),
由,解得,
∴A(,),
∴S四边形ABOE=S△AOE+S△AOB=×3×+×4×=.
(3)①如图2中,当FM⊥OC时,△OMN≌△OMF.
∵F(﹣,0),OH=,
∴OF=OH,
∴当FM⊥OC时,△OMN≌△OMF,
此时M(﹣,).
②如图3中,作ON⊥AB于N,易知N(,),ON=OF,当OM平分∠CON时,△OMN≌△OMF.
设M(m,m+3),由MF=MN,可得:(m+)2+(m+3)2=(m﹣)2+()2,
解得m=﹣,
∴M(﹣,).
③如图4中,当MN∥OF,且MN=OF时,△OFM≌△MNO.
设M(x,x+3),则N(x+,﹣(x+)+4),
∴x+3=﹣(x+)+4,
解得x=﹣,
∴M(﹣,).
④如图5中,当点M与E重合,且OF=ON时,△OMF≌△OMN,此时M(0,3).
综上所述,满足条件的点M坐标为(﹣,)或(﹣,)或(﹣,)或(0,3).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx﹣k的图象的交点坐标为A(m,2).
(1)求m的值和一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,求△AOB的面积;
(3)直接写出使函数y=kx﹣k的值大于函数y=x的值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,
∠F=30°,∠CGF=70°,求∠A的度数.
(2)利用三角板也能画出一个角的平分线,画法如下:①利用三角板在∠AOB的两边上分
别取OM=ON:②分别过点M、N画OM、ON的垂线,交点为;③画射线OP,所以射线OP为∠AOB的角平分线,请你评判这种作法的正确性并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元。
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售。设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①.AD=BC;②.DE=CF;③.BE∥AF.
⑴.请用其中两个关系式作为条件,另一个作为结论,写出所有正确的结论.
⑵.选择(1)中你写出的一个正确结论,说明它正确的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
A.图象关于直线x=1对称
B.函数y=ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根
D.当x<1时,y随x的增大而增大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com