精英家教网 > 初中数学 > 题目详情

【题目】如图中任一点经过平移后对应点为.作同样的平移得到,已知,

1 在图中画出,

2 直接写出的坐标分别为

3 ,的面积为____________.

【答案】1)见解析;(2A151),B11-1),C13-4);(38.

【解析】

1)先根据点Pmn)经平移后对应点为P1m+4n-3),得到平移的方向与距离,再进行画图;

2)根据平移的方向与距离,写出A1B1C1的坐标;

3)根据割补法可以求△A1B1C1的面积.

解:(1)∵点Pmn)经平移后对应点为P1m+4n-3),

∴△ABC向右平移4个单位,向下平移3个单位可以得到△A1B1C1,如图所示:

A1B1C1即为所求;

2)∵A14),B-32),C-1-1),

A1B1C1的坐标分别为A151),B11-1),C13-4);

3)△A1B1C1的面积为: .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点Dx轴正半轴上,线段OD=OC.

(1)求抛物线的解析式;

(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知射线CBOA,∠C=OAB,

(1)求证:ABOC

(2)如图2,E、FCB上,且满足∠FOB=AOB,OE平分∠COF.

①当∠C=110°时,求∠EOB的度数.

②若平行移动AB,那么∠OBC :OFC的值是否随之发生变化?若变化,找出变

化规律;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.

(1)求点A、B的坐标;

(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图 2,求∠AMD的度数;

(3)如图 3,(也可以利用图 1)①求点F的坐标;②坐标轴上是否存在点P,使得△ABP和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:

1)在函数中,自变量x的取值范围是________.

x

-4

-3

-2

-1

0

1

2

3

4

y

5

4

3

2

1

0

1

2

m

①求m的值;

②在平面直角坐标系xOy中,描出以上表中各组对应值为坐标的点,并根据描出的点,画出该函数的图象

2)结合函数图象写出该函数的一条性质:________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校随机抽取部分学生,调查每个月的零花钱消费额,数据整理成如下的统计表和如图①②所示的两幅不完整的统计图,已知图①中AE两组对应的小长方形的高度之比为21请结合相关数据解答以下问题:

(1)本次调查样本的容量是______

(2)补全频数分布直方图,并标明各组的频数;

(3)若该学校有2500名学生,请估计月消费零花钱不少于300元的学生的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人骑自行车前往A,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:

(1)甲、乙两人的速度各是多少?

(2)求出甲距地的路程与行驶时间之间的函数关系式.

(3)在什么时间段内乙比甲离地更近?

查看答案和解析>>

同步练习册答案