精英家教网 > 初中数学 > 题目详情
2.如图,梯形ABCD中,AD∥BC,E是AB的上一点,且AE=2EB,过点E作EF∥BC,交DC于点F.若BC=9cm,AD=6cm,则EF=8cm.

分析 首先过点A作AN∥CD,分别交EF,BC于点M,N,易得四边形AMFD与四边形ANCD是平行四边形,则可求得FM=CN=AD=3,BN=2,易证得△AEM∽△ABN,然后由相似三角形的对应边成比例,可求得EM的长,继而求得答案.

解答 解:过点A作AN∥CD,分别交EF,BC于点M,N,
∵AD∥BC,EF∥BC,
∴AD∥EF∥BC,
∴四边形AMFD与四边形ANCD是平行四边形,
∴CN=MF=AD=6cm,
∴BN=BC-CN=9-6=3cm,
∵EF∥BC,
∴△AEM∽△ABN,
∴EN:BM=AE:AB,
∵AE:EB=2:1,
∴AE:AB=2:3,
∴EM=$\frac{2}{3}$BN=2,
∴EF=EM+FM=2+6=8.
故答案为:8.

点评 此题考查了相似三角形的判定与性质、梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.已知线段AB=6,若O是AB的中点,点M在线段AB上,OM=1,则线段BM的长度为2或4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是(  )
A.70°B.60°C.50°D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,转盘中四个扇形的面积都相等.小明随意转动转盘2次,当转盘停止转动时,二次指针所指向数字的积为偶数的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,
宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.
(1)画出直角坐标系xOy,并求出抛物线ADC的函数表达式;
(2)在抛物线型拱壁E、F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若有理数a、b、c在数轴上的位置如图所示,则化简:|a|+|a-b|-|c+b|=2a+c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.己知:2+$\frac{2}{3}$=22×$\frac{2}{3}$,3+$\frac{3}{8}$=32×$\frac{3}{8}$,4+$\frac{4}{15}$=42×$\frac{4}{15}$…,按此排列,则第10个等式是(  )
A.10+$\frac{10}{11}$=102×$\frac{10}{11}$B.10+$\frac{10}{99}$=102×$\frac{10}{99}$
C.11+$\frac{11}{12}$=112×$\frac{11}{12}$D.11+$\frac{11}{120}$=112×$\frac{11}{120}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知2x3y2m和-xny是同类项,则mn的值是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案