精英家教网 > 初中数学 > 题目详情
已知二次函数y=
3
4
x2+bx+c,其图象对称轴为直线x=1,且经过点(2,-
9
4
),求此二次函数的解析式.
考点:待定系数法求二次函数解析式
专题:
分析:利用待定系数法将直线x=1,且经过点(2,-
9
4
)代入二次函数解析式,求二次函数解析式即可;
解答:解:由已知条件得
-
b
3
4
=1
3
4
×22+2b+c=-
9
4

解得b=-
3
2
,c=-
9
4

故此二次函数的解析式为y=
3
4
x2-
3
2
x-
9
4
点评:此题主要考查了待定系数法求二次函数解析式以及求二次函数顶点坐标,熟练掌握待定系数法是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点A、B、C、D的坐标如图.
(1)求直线AB与直线CD的交点E的坐标;
(2)连接AC,求△ACE的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

若1,
5
,x,5四个数成比例,则x的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

巳知n是正整数,且x2n=2,求(3x3n2-4(x23n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图所示,在△ABC中,AC=BC,∠ACB=90°,CD平分∠ACB交AB于D,点E是AB边上一点.直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,找出图中与BE相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知AB=14cm,C为线段AB上一点,BC=8cm,D为AC上一点,AD:DC=1:2,E是CB中点,求D、E两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:4(x-2)2=x2-4.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|a|=7,|b|=3,求a+b的值
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,
(1)求证:CD是⊙O的切线;
(2)若BC=3,AB=4,求平行四边形OABC的面积.

查看答案和解析>>

同步练习册答案