【题目】如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC=4,则这两块直角三角板顶点A、A′之间的距离等于___________.
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分) | 中位数(分) | 众数(分) | 方差(分2) | |
七年级 | a | 85 | b | S七年级2 |
八年级 | 85 | c | 100 | 160 |
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_____;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的网格纸中,建立了平面直角坐标系,点,点,,.
以点为对称中心,画出,使与关于点对称,并写出下列点的坐标:________,________;
多边形的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:
∵S△ABC=S△ABP+S△ACP
∴ACBF=ABPD+ACPE
∵AB=AC
∴ACBF=AC(PD+PE)
∴BF=PD+PE
(1)(变式)如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.
(2)(迁移)如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.
(3)(拓展)若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,∠CAB=30°
求:(1)求∠ADC的度数;
(2)如果OE⊥AC,垂足为E,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若两个图形成中心对称,则下列说法:
①对应点的连线一定经过对称中心;
②这两个图形的形状和大小完全相同;
③这两个图形的对应线段一定互相平行;
④将一个图形围绕对称中心旋转后必与另一个图形重合.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com