精英家教网 > 初中数学 > 题目详情

【题目】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故 ,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证

(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.

【答案】
(1)

解:设PF=m,PE=n,连结EF,如图1,

∵AF,BE是△ABC的中线,

∴EF为△ABC的中位线,AE= b,BF= a,

∴EF∥AB,EF= c,

∴△EFP∽△BPA,

,即 =

∴PB=2n,PA=2m,

在Rt△AEP中,∵PE2+PA2=AE2

∴n2+4m2= b2①,

在Rt△AEP中,∵PF2+PB2=BF2

∴m2+4n2= a2②,

①+②得5(n2+m2)= (a2+b2),

在Rt△EFP中,∵PE2+PF2=EF2

∴n2+m2=EF2= c2

∴5 c2= (a2+b2),

∴a2+b2=5c2


(2)

解:∵四边形ABCD为菱形,

∴BD⊥AC,

∵E,F分别为线段AO,DO的中点,

由(1)的结论得MB2+MC2=5BC2=5×32=45,

∵AG∥BC,

∴△AEG∽△CEB,

=

∴AG=1,

同理可得DH=1,

∴GH=1,

∴GH∥BC,

=

∴MB=3GM,MC=3MH,

∴9MG2+9MH2=45,

∴MG2+MH2=5.


【解析】(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF= c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到n2+4m2= b2 , m2+4n2= a2 , 则5(n2+m2)= (a2+b2),而n2+m2=EF2= c2 , 所以a2+b2=5c2;(2)利用(1)的结论得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得MG2+MH2=5.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了三角形中位线性质和菱形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t≤1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:

(1)此次抽查的学生数为人;
(2)补全条形统计图;
(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是
(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计, ≈1.7,结果精确到1m,则该楼的高度CD为(

A.47m
B.51m
C.53m
D.54m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是( )

A.
B.BC2=AB?BC
C.
D.≈0.618

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠A=90°,AB=ACBC=63cm,现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示,已知剪得的纸条中有一张是正方形,则这张正方形纸条是从下往上数第张.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.

时段

x

还车数
(辆)

借车数
(辆)

存量y
(辆)

6:00﹣7:00

1

45

5

100

7:00﹣8:00

2

43

11

n

根据所给图表信息,解决下列问题:
(1)m= , 解释m的实际意义:
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).
(1)若以C、E、F为顶点的三角形与以A、B、C为顶点的三角形相似. ①当AC=BC=2时,AD的长为
②当AC=3,BC=4时,AD的长为
(2)当点D是AB的中点时,△CEF与△CBA相似吗?请说明理由.

查看答案和解析>>

同步练习册答案