分析 (1)先把A点坐标代入正比例函数解析式求出n,从而确定A点坐标,然后利用待定系数法确定m的值;
(2)由一次函数y1=x+2求得B的坐标,然后根据三角形面积公式求得即可.
解答 解:(1)把点A(2,n)代入y2=2x得:
n=2×2=4,
则A点坐标为(2,4),
把A(2,4)代入y1=(m-1)x+2得:
4=(m-1)×2+4,
解得:m=2;
(2)∵m=3=2,
∴y1=x+2,
令y=0,则x=-2,
∴B(-2,0),
∵A(2,4),
∴△ABO的面积=$\frac{1}{2}$×2×4=4.
点评 本题考查了两直线平行或相交的问题、待定系数法求函数的解析式、三角形面积的计算;根据题意求出有关点的坐标是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 最小的自然数是1 | |
| B. | 在一个数前面加上“-”号所得的数是负数 | |
| C. | 任意有理数a的倒数是$\frac{1}{a}$ | |
| D. | 任意有理数a的相反数是-a |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 11 | B. | 7 | C. | 7或11 | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com