精英家教网 > 初中数学 > 题目详情

【题目】若平行四边形的一边长为7,则它的两条对角线长可以是(  )

A. 122 B. 34 C. 1416 D. 48

【答案】C

【解析】

平行四边形的长为7的一边,与对角线的交点,构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.设两条对角线的长度分别是xy,即三角形的另两边分别是xy,那么得到不等式组,解得,所以符合条件的对角线只有1416

解:如图,ABCD中,

AB7,设两条对角线ACBD的长分别是xy

∵四边形ABCD为平行四边形,

OAOCOBOD

OAxOBy

∴在△AOB中,

即:

解得:

将四个选项分别代入方程组中,只有C选项满足.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在AB,AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;
(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD= 时,求线段CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,AB,BC,点E从点A出发,以每秒 个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.

(1)求抛物线的解析式;
(2)当点G落在第一象限内的抛物线上时,求出t的值;
(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.

如图,∠MON60°,在射线OM上找一点A,过点AABOMON于点B,以A为端点作射线AD,交线段OB于点C(规定0°< ∠OAC < 90°).

1)∠ABO的度数为   °,△AOB   (填“是”或“不是”灵动三角形);

2)若∠BAC60°,求证:△AOC为“灵动三角形”;

3)当△ABC为“灵动三角形”时,求∠OAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC50°20′OD平分∠AOC,∠DOE90°

1)求∠DOB的度数;

2)请你通过计算说明OE是否平分∠COB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在边CD上的点F处,若△DEF的周长为8,△CBF的周长为18,则FC的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米. (注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,∠ABC60°,点EF分别在CDBC的延长线上,AEBDEFBF,垂足为点FDF2

1)求证:DEC中点;

2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如何求tan75°的值?按下列方法作图可解决问题.如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD.连接此图可求得tan75°的值为( )

A.2-
B.2+
C.1+
D.
-1

查看答案和解析>>

同步练习册答案