【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,制定了促销条件:当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元.
(1)若销售商一次订购x(x>100)个零件,直接写出零件的实际出厂单价y(元)?
(2)设销售商一次订购x(x>100)个零件时,工厂获得的利润为W元(W>0).
①求出W(元)与x(个)之间的函数关系式及自变量x的取值范围;并算出销售商一次订购多少个零件时,厂家可获得利润6000元;
②厂家为了达到既鼓励销售商订购又保证自己能获取最大利润的目的,重新制定新促销条件:在原有的基础上又增加了限制条件﹣﹣销售商订购的全部零件的实际出厂单价不能低于a(元).请你利用函数及其图象的性质求出a的值;并写出实行新促销条件时W(元)与x(个)之间的函数关系式及自变量x的取值范围.(工厂出售一个零件利润=实际出厂单价﹣每个零件的成本)
【答案】(1)实际出厂单价y=﹣0.02x+62;(2)①销售商一次订购500个或600个零件时,利润是6000元;②w=﹣0.02x2+22x(100<x<550).
【解析】
(1)先求出超过100个的个数,再求出每件降低的价格,进而求出实际出厂单价即可.(2)①根据工厂出售一个零件利润=实际出厂单价﹣每个零件的成本即可得出W与x之间的函数关系式,根据利润要大于0即可确定x的取值范围.根据关系式即可求出利润为6000时销售的零件个数. ②根据x=-时二次函数有最大值可求出x的值,进而求出最大值时的单价a的值,分别讨论x≥550时,100<x<550时的利润即可得出新促销条件时W(元)与x(个)之间的函数关系式.
(1)根据题意得:
∵一次订购x(x>100)个零件,超过的个数:x﹣100,每件降低的价格,0.02(x﹣100)元,
∴实际出厂单价y=60﹣0.02(x﹣100)=﹣0.02x+62;
(2)①∵设销售商一次订购x(x>100)个零件时,工厂获得的利润为W元(W>0),
∴w=x[(﹣0.02x+62)﹣40]=﹣0.02x2+22x,
∵﹣0.02x+22>0,
∴x<1100,
∴100<x<1100;
要想获得利润6000元,
即:w=x(﹣0.02x+22)=﹣0.02x2+22x=6000;
﹣0.02x2+22x﹣6000=0;
解得:x1=500,x2=600;
答:销售商一次订购500个或600个零件时,利润是6000元.
②∵w=x(﹣0.02x+22)=﹣0.02x2+22x
∴当x=﹣=﹣ =550时,获得最大利润,
y=﹣0.02x+62=﹣0.02×550+62=51元;
∴当单价为51元时,将获最大利润,
∴a=51.
∴当x≥550时,w=(51﹣40)x=11x;
∴w=x(﹣0.02x+22)=﹣0.02x2+22x(100<x<550).
科目:初中数学 来源: 题型:
【题目】阅读理解
在⊙I中,弦AF与DE相交于点Q,则AQQF=DQQE.你可以利用这一性质解决问题.
问题解决
如图,在平面直角坐标系中,等边△ABC的边BC在x轴上,高AO在y轴的正半轴上,点Q(0,1)是等边△ABC的重心,过点Q的直线分别交边AB、AC于点D、E,直线DE绕点Q转动,设∠OQD=α(60°<α<120°),△ADE的外接圆⊙I交y轴正半轴于点F,连接EF.
(1)填空:AB= ;
(2)在直线DE绕点Q转动的过程中,猜想:与的值是否相等?试说明理由.
(3)①求证:AQ2=ADAE﹣DQQE;
②记AD=a,AE=b,DQ=m,QE=m(a、b、m、n均为正数),请直接写出mn的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线为抛物线、b、c为常数,的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于A、B两点点A在点B的左侧,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将以AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x、y的方程组,其中﹣3≤a≤1,给出下列结论:
①是方程组的解;
②当a=﹣2时,x+y=0;
③若y≤1,则1≤x≤4;
④若S=3x﹣y+2a,则S的最大值为11.
其中正确的有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发xmin后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)A点所表示的实际意义是 ;= ;
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度
的一半,那么两人出发后多长时间第一次相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC为等边三角形,FB平分∠ABC,D为BF的中点,连接AD交BC的延长线于点E,若EF⊥BF,则_______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( )
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com