【题目】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的位置关系.
【答案】AD⊥EF,且AD平分EF,理由见解析.
【解析】
根据角平分线的性质得到∠EAD=∠FAD,DE=DF,易证△AED≌△AFD,从而得到AE=AF,然后可证△AEG≌△AFG,得到EG=FG,∠AGE=∠AGF=90°,从而得出结论.
解:AD⊥EF,且AD平分EF,理由如下:
∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F
∴∠EAD=∠FAD,DE=DF,∠AED=∠AFD=90°,
在△AED和△AFD中,
∴△AED≌△AFD(AAS)
∴AE=AF
在△AEG和△AFG中,
∴△AEG≌△AFG(SAS)
∴EG=FG,∠AGE=∠AGF=90°
即AD⊥EF,且AD平分EF.
科目:初中数学 来源: 题型:
【题目】课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网经济的发展,“共享单车“越来越走近老百姓的生活.赵刚同学对某站点”共享单车”的租用情况进行了调查,将该站点一天中市民每次租用“其享单车“的时间t(单位:分)(t≤120)分成A,B,C,D四个组,进行各组人次统计,并绘制了如下的统计图(不完整).请根据图中信息解答下列问题:
(1)该站点一天中租用”共享单车“的总人次为 ,表示A的扇形圆心角的度数是 .
(2)补全条形统计图.
(3)“共享单车”服务公司规定:市民每次使用共享单车时间不超过30分钟收费1元,超过30分钟收费2元,已知该市每天租用共享单车(时间在2小时以内)的市民平均约有5000人次,根据以上数据估计共享单车服务公司每天大约收入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?
(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,制定了促销条件:当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元.
(1)若销售商一次订购x(x>100)个零件,直接写出零件的实际出厂单价y(元)?
(2)设销售商一次订购x(x>100)个零件时,工厂获得的利润为W元(W>0).
①求出W(元)与x(个)之间的函数关系式及自变量x的取值范围;并算出销售商一次订购多少个零件时,厂家可获得利润6000元;
②厂家为了达到既鼓励销售商订购又保证自己能获取最大利润的目的,重新制定新促销条件:在原有的基础上又增加了限制条件﹣﹣销售商订购的全部零件的实际出厂单价不能低于a(元).请你利用函数及其图象的性质求出a的值;并写出实行新促销条件时W(元)与x(个)之间的函数关系式及自变量x的取值范围.(工厂出售一个零件利润=实际出厂单价﹣每个零件的成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=6,点D在边AC上,AD的中垂线交BC于点E.若∠AED=∠B,CE=3BE,则CD等于( )
A. B. 2C. D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com