【题目】在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).
(1)求这个一次函数的表达式;
(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为 .
【答案】(1)y=﹣x+5;(2).
【解析】
(1)利用待定系数法即可求得;
(2)求得直线AB,直线y=2x﹣4与y轴的交点,以及两直线的交点坐标,然后根据三角形面积公式,即可求解.
(1)设一次函数的解析式为:y=kx+b,
∵一次函数的图象经过点A(5,0),B(1,4),
∴,解得:,
∴一次函数的表达式为:y=﹣x+5;
(2)联立,解得:,
∴两直线的交点坐标为:(3,2),
直线y=2x﹣4中,令x=0,则y=﹣4;直线y=﹣x+5中,令x=0,则y=5.
∴两直线与y轴的交点分别为:(0,﹣4)和(0,5),
∴直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为:,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,反比例函数y=(x>0)的图象经过点A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连接AD,DC,CB.
(1)求k的值;
(2)求证:DC∥AB;
(3)当AD∥BC时,求直线AB的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的对角线AC,BD相交于点O.
(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;
(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,
①求证:∠ODG=∠OCE;
②当AB=1时,求HC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是( )
A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠DD.∠ABD=∠DCA,∠A=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:
每箱售价x(元) | 68 | 67 | 66 | 65 | … | 40 |
每天销量y(箱) | 40 | 45 | 50 | 55 | … | 180 |
已知y与x之间的函数关系是一次函数.
(1)求y与x的函数解析式;
(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?
(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是( )
A.300B.320C.340D.360
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A,B两点(点A在点B的左侧),点A,点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)求出点A,点B的坐标.
(2)求出该二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上一点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.
(1)求证:四边形CDEF是菱形.
(2)当∠ACB= 度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com