【题目】如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC.连接 DF、EG.
(1)求证:AB=AC.
(2)已知 AB=5,BC=6.求四边形DFGE是矩形时⊙O的半径.
【答案】(1)证明见解析;(2)四边形DFGE是矩形时⊙O的半径为.
【解析】
(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;
(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得,得到AD=r,再由△GBD∽△ABN得,列出方程即可解决问题.
(1)证明:∵AD、AE是⊙O的切线,
∴AD=AE,
∴∠ADE=∠AED,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴∠B=∠C,
∴AB=AC;
(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,
∵四边形DFGE是矩形,
∴∠DFG=90°,
∴DG是⊙O直径,
∵⊙O与AB、AC分别相切于点D、E,
∴OD⊥AB,OE⊥AC,
∵OD=OE.
∴AN平分∠BAC,∵AB=AC,
∴AN⊥BC,BN=BC=3,
在Rt△ABN中,AN=,
∵OD⊥AB,AN⊥BC,
∴∠ADO=∠ANB=90°,
∵∠OAD=∠BAN,
∴△AOD∽△ABN,
∴,即,
∴AD=r,
∴BD=AB﹣AD=5﹣r,
∵OD⊥AB,
∴∠GDB=∠ANB=90°,
∵∠B=∠B,
∴△GBD∽△ABN,
∴,即,
∴r=,
∴四边形DFGE是矩形时⊙O的半径为
科目:初中数学 来源: 题型:
【题目】(1)化简;
(2)如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P, Q两点;
②作直线PQ,分别交AB,AC于点E,D;
③过C作CF∥AB交PQ于点F.
求证:△AED≌△CFD;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动。某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B点3.6米,该学生继续向上很快就攀到顶点E。在A处站立的带队老师拉着安全绳,分别在点D和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,
求两次摸 出都是红球的概率;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.
(1)求A、A′、C三点的坐标;
(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;
(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.
(Ⅰ)求证:EF为⊙O的切线;
(Ⅱ)若AB=2,∠BDC=2∠A,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为_________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任宁老师对全
班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是多少,并将条形统计图补充完整;
(2)宁老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这组学生中任意挑选两名担任活动记录员,那么恰好选1名男生和1名女生担任活动记录员的概率;
(3)若学校学生总人数为2000人,根据八年级(3)班的情况,估计全校报名军事竞技的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有三张分别画有正三角形、平行四边形、菱形图案的卡片,它们除图案外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的每一张卡片的图案既是轴对称图形又是中心对称图形的概率是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com