【题目】如图,直线y=﹣2x+8与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过A点分别作两坐标轴的垂线,垂足分别为B、C.
(1)若矩形ABOC的面积为5,求A点坐标.
(2)若点A在线段PQ上移动,求矩形ABOC面积的最大值.
【答案】(1)A点的坐标是(,4﹣ )或(,4+);(2)矩形ABOC的最大值是8.
【解析】试题分析:(1)设A(x,﹣2x+8),根据矩形ABOC的面积为5得出方程x(﹣2x+8)=5,求出方程的解即可;
(2)设A(x,﹣2x+8),矩形ABOC面积是S,根据矩形面积公式得出S=x(﹣2x+8),求出函数的最值即可.
试题解析:解:(1)设A(x,﹣2x+8),∵矩形ABOC的面积为5,∴x(﹣2x+8)=5,解得:x1=,x2=,∴y1=,y2=,即A点的坐标是(, )或(, );
(2)设A(x,﹣2x+8),矩形ABOC面积是S,则S=x(﹣2x+8)=﹣2(x﹣2)2+8.∵a=﹣2<0,∴有最大值,当x=2时,S的最大值是8,即矩形ABOC的最大值是8.
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由.
下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (两直线平行,内错角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个长8 厘米,宽6厘米的长方形中,剪下一个最大的圆,这个圆的面积是( )平方厘米.
A.18.84B.28.26C.25.12D.50.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)
商品 价格 | A | B |
进价(元/件) | 1200 | 1000 |
售价(元/件) | 1350 | 1200 |
(1)该商场第1次购进A、B两种商品各多少件?
(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列多项式的乘法中,能用平方差公式计算的是( )
A. (-m +n)(m - n) B. (a +b)(b -a)
C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.
(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为 .
(2)若图1中每块小长方形的面积为12cm2,四个正方形的面积和为50 cm2,试求图中所有裁剪线(虚线部分)长之和.
(3)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=16,请求出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A. 在AC、BC两边高线的交点处
B. 在AC、BC两边中线的交点处
C. 在AC、BC两边垂直平分线的交点处
D. 在∠A、∠B两内角平分线的交点处
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com