精英家教网 > 初中数学 > 题目详情
15.$\frac{3}{2}$的倒数是(  )
A.-$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.$\frac{3}{2}$

分析 根据乘积为1的两个数互为倒数,可得答案.

解答 解:$\frac{3}{2}$的倒数是$\frac{2}{3}$,
故选:B.

点评 本题考查了倒数,分子分母交换位置是求一个数倒数的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若关于x的方程x2+2x+k=0的一个根是0,则方程的另一个根是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)已知线段AB=8,点C在线段AB的延长线上,M、N分别是线段AC与线段BC的中点,求线段MN的长;
(2)已知线段AB=8cm,点C在线段AB的反向延长线上,M、N分别是线段AC与线段BC的中点,则线段MN的长为4cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.我们已经研究过函数的增减性(即单调性)、函数的对称性(即奇偶性)、函数的有界性,今天我们来研究一下函数的周期性.生活中有很多具有周期性的例子,如钟表的指针绕钟表圆心周而复始的旋转等,再如下面的例子:
甲乙两地开通了动车,设两地相距400千米,动车速度为200千米/时,若每隔2小时就有一辆动车从甲地发出,共有5辆动车,设第1辆动车出发的时刻为0时,第1辆动车出发时间为x小时,若设动车与乙地的距离为y1千米,则上面描述可用下面的函数图象来表示(如图1)
其实,这五条线段可以用如下的函数解析式来表达:
y1=-200(x-2i)+400(2i≤x≤2i+2,i=0,1,2,3,4)
(1)若在第一辆动车出发的同时,有一辆慢车从乙地开往甲地,速度为80千米/时,设慢车与乙地的距离为y2千米,在图1 中画出这辆慢车运行的函数图象,并结合图象说明整个运行过程中,慢车与动车共相遇多少次?
(2)已知z=(x-1-2i)2(2i≤x≤2i+2,i=0,1,2,3)
①在图2的平面直角坐标系中画出这个函数的图象.
②当x=2.5和x=5.4时,对应的函数值分别为z1和z2,比较z1和z2的大小.
(3)若关于x的方程k(x+1)=(x-1-2i)2(2i≤x≤2i+2),i=0,1,2,3)有5个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.-0.5的倒数是-2,(-0.5)2=0.25,(-0.5)3=-0.125.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知函数y=2x+4,
(1)求该函数与坐标轴的交点坐标;
(2)画出该函数的图象;
(3)点C(2,p)在这条直线上,求p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:∠AOB,点M、N.求作:
①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.一个三角形内切圆的半径为2cm,且这个三角形的面积为10cm2,这个三角形的周长是10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,在AB=3,BC=5,对角线AC⊥AB.点P从点D出发,沿折线DC-CB以每秒1个单位长度的速度向终点B运动(不与点B、D重合),过点P作PE⊥AB,交射线BA于点E,连结PD、DE.设点P的运动时间为t(秒),△PDE与?ABCD重叠部分图形的面积为S(平方单位).
(1)AD与BC间的距离是$\frac{12}{5}$;
(2)求PE的长(用含t的代数式表示);
(3)求S与t的之间的函数关系式;
(4)直接写出PE将?ABCD的面积分成1:7的两部分时t的值.

查看答案和解析>>

同步练习册答案