【题目】如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.
【答案】2
【解析】
根据等边对等角可得∠B=∠C,再利用三角形的内角和定理求出∠BAC=120°,然后求出∠CAD=30°,从而得到∠CAD=∠C,根据等角对等边可得AD=CD,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2AD,然后根据BC=BD+CD列出方程求解即可
∵AB=AC,
∴∠B=∠C=30°,
∴∠BAC=180°-2×30°=120°,
∵DA⊥BA,
∴∠BAD=90°,
∴∠CAD=120°-90°=30°,
∴∠CAD=∠C,
∴AD=CD,
在Rt△ABD中,
∵∠B=30°,∠BAD=90°,
∴BD=2AD,
∴BC=BD+CD=2AD+AD=3AD,
∵BC=6cm,
∴AD=2cm.
科目:初中数学 来源: 题型:
【题目】如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以An为顶点的内角的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=12cm,CA⊥AB于点A,DB⊥AB于点B,且AC=4cm,点P从点B向点A运动,每秒钟走1cm,点Q从点B向点D运动,每秒钟走2cm,两点同时出发,运动几秒钟后,△CPA与△PQB全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为S,作△ABC边中线AC1,取AB的中点A1,连接A1C1得到第一个三角形△A1BC1,作△A1BC1中线A1C2,取A1B的中点A2,连接A1C2得到第二个三角形△A2BC2………,重复这样的操作,则第2019个三角形△A2019BC2019的面积是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级500名男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理统计表:
男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高 | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根据以上表格信息,解答如下问题:
(1)计算这组数据的三个统计量:平均数、中位数、众数;
(2)请你选择其中一个统计量作为选定标准,估计该校九年级男生中具有“普通身高”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知△ABC,以AB、AC为边向△ABC外作等边三角形ABD和等边三角形ACE,连接BE、CD.请你完成图形,并证明:BE=CD;
(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,BE和CD有什么数量关系?说明理由;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量河两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt ABC中,,AB=5cm, AC=3cm, 动点P从点B出发沿射线BC以2cm/s 的速度移动,设运动的时间为t秒.t= __________ 时三角形ABP为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知 AD//BC, 点 E 为 CD 上一点,AE、BE 分别平分∠DAB、∠CBA,BE交 AD 的延长线于点 F.求证:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com