精英家教网 > 初中数学 > 题目详情
如图,一块三角形土地的底边BC=100m,高AH=80m.某单位要沿着底边BC修一座底面是矩形DEFG的大楼,设矩形DEFG的一边DE=x(m).当DE为多少时,大楼底面的面积最大?最大值是多少?
考点:相似三角形的应用,二次函数的最值
专题:
分析:两三角形相似,对应高之比等于相似比.利用此性质即可解答.
解答:解:设DE的长为x,矩形DEFG面积为y,
∵矩形DEFG的边EF在△ABC的边BC上,
∴DG∥BC,(1分)
∴△ADG∽△ABC(2分)
∵AH⊥BC,
∴AM⊥DG
AM
AH
=
DG
BC

80-x
80
=
DG
100
,(2分)
∴DG=100-
5
4
x,(1分)
∴y=-
5
4
x2+100x
=-
5
4
(x-40)2+2000,
∴当DE的长为40米时,有最大面积,最大面积为2000平方米.
点评:考查了相似三角形的应用,本题中求得x的值使得xy有最大值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果一个单项式与-3x2-4.5x的乘积等于2x3+mx2,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.
(1)求k,b的值;
(2)求出它的图象与x轴、y轴所围成图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2a-2)2+|3b+3|=0,则a2014+b2014=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,是一块四边形草坪,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m,求草坪面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

一艘海轮以30海里/时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/时的速度由南向北移动,距台风中心30
10
海里的圆形区域内(包括边界)都属台风区,当海轮行到A处时,测得台风中心移到位于A处正南方向的B处,且AB=150海里.
(1)若这艘海轮自A处按原来的速度继续航行,途中会不会遇到台风?若会,试求轮船最初遇到台风的时间,若不会,试说明理由;
(2)现在轮船自A处立即提高速度,向位于北偏东60°的方向、相距90海里的D港驶去,为使台风到达之前到达D港,问船速至少应提高多少?(提高的船速取整数,
13
3.6)

查看答案和解析>>

科目:初中数学 来源: 题型:

-2的绝对值是
 
,相反数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

方程x+a=2的解与方程2x+3=-5的解相同,则a=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x-2n=0有两个不相等的实数根.
(1)求n的取值范围;
(2)若方程的一个根为4,求方程的另一根.

查看答案和解析>>

同步练习册答案