精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形中,点是对角线上的一点,点的延长线上,且于点.

1)证明:

2)如图,把正方形改为菱形,其它条件不变,当时,连接,试探究线段与线段的数量关系,并说明理由.

【答案】1)证明见解析;(2APCE,理由见解析.

【解析】

(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE
(2)根据已知和(1)易证△ADP≌△CDP,得PC=PE,∠DAP=DCP,由PA=PE,得到∠DAP=AEP,∠DCP=E,而可得∠CDE=60°,再结合三角形内角和定理可得∠EPC=60°EPC为等边三角形,即可得到结论;

解:(1)证明:在正方形ABCD中,ABBC,∠ABP=∠CBP45°

PBPB

∴△ABP≌△CBP(SAS)

PAPC

PAPE

PCPE

(2)解:APCE

理由如下:

在菱形ABCD中,ADDC,∠ADP=∠CDP60°

PDPD

∴△ADP≌△CDP(SAS)

PAPC,∠DAP=∠DCP

PAPE

PCPE

∴∠DAP=∠DEP

∴∠DCP=∠DEP

∵∠CFP=∠EFD

180°﹣∠PFC﹣∠PCF180°﹣∠DFE﹣∠DEP

即∠CPE=∠CDE180°﹣∠ADC180°120°60°

∴△EPC是等边三角形,

PCCE

APCE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.

投针次数n

1000

2000

3000

4000

5000

10000

20000

针与直线相交的次数m

454

970

1430

1912

2386

4769

9548

针与直线相交的频率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三个推断:

①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454

②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477

③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769

其中合理的推断的序号是:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令RtPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCDPMN重叠部分的面积为y,则yx的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+3的图象经过A(﹣10)、C30)、并且与y轴相交于点B,点P是直线BC上方的抛物线上的一动点,PQy轴交直线BC于点Q

1)求此二次函数的表达式;

2)求线段PQ的最大值;

3)在抛物线的对称轴上,是否存在点M,使△MAB为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,高度相同的两根电线杆ABCD均垂直于地面AF,某时刻电线杆AB的影子为地面上的线段AE,电线杆CD的影子为地面上的线段CF和坡面上的线段FG.已知坡面FG的坡比i=10.75,又AE=6米,CF=1米,FG=5米,那么电线杆AB的高度为______米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有( )个

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 (  )

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数,当时,函数有最大值.

(1)求此二次函数图象与坐标轴的交点;

(2)将函数图象轴下方部分沿轴向上翻折,得到的新图象,若点是翻折得到的抛物线弧部分上任意一点,若关于的一元二次方程恒有实数根时,求实数的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案