精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2
(1)求k的取值范围;
(2)若x1+x2=3x1x2﹣6,求k的值.

【答案】
(1)解:∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2

∴△≥0,即4(k+1)2﹣4×1×k2≥0,解得k≥﹣

∴k的取值范围为k≥﹣


(2)解:∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2

∴x1+x2=2(k+1),x1x2=k2

∵x1+x2=3x1x2﹣6,

∴2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0,

∴k1=2,k2=﹣

∵k≥﹣

∴k=2.


【解析】(1)根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到△≥0,即4(k+1)2﹣4×1×k2≥0,解不等式即可得到k的范围;(2)根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2(k+1),x1x2=k2 , 则2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0,利用因式分解法解得k1=2,k2=﹣ ,然后由(1)中的k的取值范围即可得到k的值.
【考点精析】解答此题的关键在于理解求根公式的相关知识,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根,以及对根与系数的关系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.

1求乙骑自行车的速度;

2当甲到达学校时,乙同学离学校还有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CAB上,△DAC、EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,则下列结论:①AE=DB;CM=CN;③△CMN为等边三角形MN//BC;

正确的有_________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=﹣m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.

(1)探究:当x≠0时,a与m有何数量关系?
(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=﹣4的距离相等,请写出动点M形成的抛物线的解析式.
(3)拓展:根据抛物线的平移变换,抛物线y= (x﹣1)2+2的图象可以看作到定点A()的距离与它到定直线y=的距离相等的动点M(x,y)所形成的图形.
(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=﹣ ,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等边三角形.

(1)如图,点DAB边上,点EAC边上,BDCEBECD交于点F试判断BFCF的数量关系,并加以证明;

(2)点DAB边上的一个动点,点EAC边上的一个动点,且BDCEBECD交于点F.若△BFD是等腰三角形,求∠FBD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2x+ =0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2+2x+ 的图象向下平移9个单位,求平移后的图象的表达式;
(3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线y=kx+b(k>0)过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于﹣5时,求k的取值范围.

查看答案和解析>>

同步练习册答案