6£®ÔĶÁ²ÄÁϲ¢½â´ðÎÊÌ⣬ÎÒÃÇÒѾ­ÖªµÀ£¬Íêȫƽ·½Ê½¿ÉÒÔÓü¸ºÎͼÐÎÀ´±íʾ£¬Êµ¼ÊÉÏ»¹ÓÐЩ´úÊýʽºãµÈʽҲ¿ÉÒÔÓÃÕâÖÖÐÎʽ±íʾ£¬ÀýÈ磨2a+b£©£¨a+b£©=2a2+3ab+b2¾Í¿ÉÒÔÓÃͼ1¡¢Í¼2µÈͼÐεÄÃæ»ý±íʾ£®
£¨1£©ÇëÄãд³öͼ3Ëù±íʾµÄ´úÊýºãµÈʽ£»
£¨2£©ÊÔ»­³öÒ»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ýÄܱíʾΪ£¨a+b£©£¨a+2b£©=a2+3ab+2b2£¨3£©Çë·ÂÕÕÉÏÊö·½·¨Áíдһ¸öº¬ÓеĴúÊýºãµÈʽ£¬²¢»­³öÓëÖ®Ïà¶ÔÓ¦µÄ¼¸ºÎͼÐΣ®

·ÖÎö £¨1£©ÀûÓþØÐεÄÃæ»ýÏàµÈÁйØÏµÊ½¼´¿É£»
£¨2£©»­Ò»¸ö³¤Îª£¨a+2b£©£¬¿íΪ£¨a+b£©µÄ¾ØÐμ´¿É£»

½â´ð ½â£º£¨1£©£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£»
£¨2£©ºãµÈʽÊÇ£¨a+2b£©£¨a+b£©=a2+3ab+2b2£¬ÈçͼËùʾ£®
£¨´ð°¸²»Î¨Ò»£©

µãÆÀ ±¾ÌâÊÇÍêȫƽ·½¹«Ê½µÄÓ¦Óã¬Á½ÊýµÄƽ·½ºÍ£¬ÔÙ¼ÓÉÏ»ò¼õÈ¥ËüÃÇ»ýµÄ2±¶£¬¾Í¹¹³ÉÁËÒ»¸öÍêȫƽ·½Ê½£®×¢Òâ»ýµÄ2±¶µÄ·ûºÅ£¬±ÜÃ⩽⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èô²»µÈʽ×é$\left\{\begin{array}{l}{x+1£¼a¢Ù}\\{3x+5£¾x-7¢Ú}\end{array}\right.$Óн⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬¿ª·¢ÇøÐ¡Ñ§×¼±¸Ð½¨Ò»¸ö³¤¶ÈΪLµÄ¶ÁÊ鳤ÀÈ£¬²¢×¼±¸ÓÃÈô¸É¿é´øÓл¨ÎƺÍûÓл¨ÎƵÄÁ½ÖÖ¹æ¸ñ´óСÏàͬµÄÕý·½ÐεØÃæ×©´îÅäÔÚÒ»Æð£¬°´Í¼ÖÐËùʾµÄ¹æÂÉÆ´³Éͼ°¸ÆÌÂú³¤ÀÈ£¬ÒÑ֪ÿ¸öСÕý·½ÐεØÃæ×©µÄ±ß³¤¾ùΪ0.3m£®
¡­
£¨1£©°´Í¼Ê¾¹æÂÉ£¬µÚһͼ°¸µÄ³¤¶ÈL1=0.9m£»µÚ¶þ¸öͼ°¸µÄ³¤¶ÈL2=1.5m£»
£¨2£©ÇëÓôúÊýʽ±íʾ´øÓл¨ÎƵĵØÃæ×©¿éÊýnÓë×ßÀȵij¤¶ÈLnÖ®¼äµÄ¹ØÏµ£»
£¨3£©µ±ËùÐè´øÓл¨ÎÆÍ¼°¸µÄ´ÉשҪ50¿éʱ£¬Çë°ïѧУ¼ÆËã×ßÀȵij¤¶ÈL50£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÒÑÖªMA¡ÎNB£¬CAƽ·Ö¡ÏBAE£¬CBƽ·Ö¡ÏABN£¬µãDÊÇÉäÏßAMÉÏÒ»¶¯µã£¬Á¬DC£¬µ±DµãÔÚÉäÏßAM£¨²»°üÀ¨Aµã£©ÉÏ»¬¶¯Ê±£¬¡ÏADC+¡ÏACD+ABCµÄ¶ÈÊýÊÇ·ñ·¢Éú±ä»¯£¿Èô²»±ä£¬ËµÃ÷ÀíÓÉ£¬²¢Çó³ö¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬AB¡ÎCD£¬Ö±L½»AB¡¢CD·Ö±ðÓÚµãE¡¢F£¬µãMÔÚÏß¶ÎEFÉÏ£¨µãM²»ÓëE¡¢FÖØºÏ£©£¬NÊÇÖ±ÏßCDÉϵÄÒ»¸ö¶¯µã£¨µãN²»ÓëFÖØºÏ£©
£¨1£©µ±µãNÔÚÉäÏßFCÉÏÔ˶¯Ê±£¨Fµã³ýÍ⣩£¬Ôò¡ÏFMN+¡ÏFNM=¡ÏAEF£¬ËµÃ÷ÀíÓÉ£¿
£¨2£©µ±µãNÔÚÉäÏßFDÉÏÔ˶¯Ê±£¨Fµã³ýÍ⣩£¬¡ÏFMN+¡ÏFNMÓë¡ÏAEFÓÐʲô¹ØÏµ£¿»­³öͼÐΣ¬²ÂÏë½áÂÛ²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©ÈçͼÊÇС¸Õ£¨A£©¡¢Ð¡Ã÷£¨B£©¡¢Ð¡Ó£¨C£©ºÍËûÃǸ÷×ÔÓ°×ӵĸ©ÊÓͼ£¬ËûÃÇËù¹¹³ÉÈý½ÇÐεØÐεÄÄÚ²¿ÓÐһյ·µÆ£¬ÄãÈÏΪÈçͼÊÇÔÚ°×ÌìÑô¹âϵĸ©ÊÓͼ»¹ÊÇÔÚÍíÉÏÕâյ·µÆÏµĸ©ÊÓͼ£¿
£¨2£©Èç¹ûÈýÈËÒªºÍСÁÁÍæ¡°×½ÈË¡±ÓÎÏ·£¬ÓÉСÁÁ³äµ±×½ÈËÕߣ¬ÀíÂÛÉÏ£¬Ð¡ÁÁÕ¾ÔÚÄĸöλÖÃʱ¶ÔÈýÈ˱ȽϹ«Æ½£¬ÇëÄã±ê³öÕâ¸öλÖã¨Óó߹æ×÷ͼ£¬Ö»±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬¾ØÐÎABCDÖУ¬EΪCDµÄÖе㣬Á¬½ÓAE²¢ÑÓ³¤½»BCµÄÑÓ³¤ÏßÓÚµãF£¬Á¬½ÓBD½»AFÓÚH£¬AD=10$\sqrt{2}$£¬ÇÒtan¡ÏEFC=$\frac{\sqrt{2}}{4}$£¬ÄÇôAHµÄ³¤Îª£¨¡¡¡¡£©
A£®$\frac{10\sqrt{6}}{3}$B£®5$\sqrt{2}$C£®10D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ1£¬ÓÐÒ»ÕÅÆ½ÐÐËıßÐÎֽƬ£¬½«Ö½Æ¬ÑØ×ŶԽÇÏß¼ô¿ª£¬ÐγÉÁ½¸öÈ«µÈµÄÈý½ÇÐΣ¬¡ÏA=100¡ã£¬¡ÏACB=60¡ã£¬½«¡÷DEFÑØ×ÅBEµÄ·½ÏòÒÔÿÃë2cmµÄËÙ¶ÈÔ˶¯µ½Í¼2µÄλÖã¬Á¬½ÓAF¡¢CD£®

£¨1£©ÇóÖ¤£ºËıßÐÎAFDCÊÇÆ½ÐÐËıßÐΣ»
£¨2£©ÈôAC=4cm£¬BC=10cm£¬¡÷DEFÑØ×ÅBEµÄ·½ÏòÔ˶¯Ê±¼äΪtÃ룮
¢Ùµ±tΪºÎֵʱ£¬?AFDCÊÇÁâÐΣ¿Çë˵Ã÷ÄãµÄÀíÓÉ£»
¢Ú?AFDCÄÜÊǾØÐÎÂð£¿ÈôÄÜ£¬Çó³ötµÄÖµ¼°´Ë¾ØÐεÄÃæ»ý£»Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÏÈ»¯¼òÔÙÇóÖµ£º$\frac{{x}^{2}-8x+16}{{x}^{2}+2x}$¡Â£¨$\frac{12}{x+2}$-x+2£©+$\frac{1}{x+4}$£¬ÆäÖУ¬xΪ¸Ã²»µÈʽ×é$\left\{\begin{array}{l}{x-2£¼0}\\{5x+1£¾2£¨x-1£©}\end{array}\right.$µÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸