【题目】联想与探索:
如图1,将线段A1A2本向右平移1个单位长度至B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图2中,将折线A1A2A3向右平移1个单位长度至B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移1个单位长度,从而得到一个封闭图形,并用阴影表示;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b) :S1= ,S2= ,S3= ;
(3)如图4,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位长度,长方形水平方向长为a,竖直方向长为b),则空白部分表示的草地面积是多少?
(4)如图5,若在(3)中的草地上又有一条横向的曲小路(小路任何地方的宽度都是1个单位长度),则空白部分表示的草地面积是多少?
【答案】 (1)见解析;(2)a(b-1),a(b-1),a(b-1);(3) b(a-2);(4)(a-2)(b-1).
【解析】
(1)根据题意,直接画图即可,注意答案不唯一,只要画一条有两个折点的折线,得到一个封闭图形即可.
(2)结合图形,根据平移的性质可知,图1图2图3中空白部分的面积都可看作是以a﹣1为长,b为宽的长方形的面积.
(3)结合图形,通过平移,空白部分可平移为以a﹣2米为长,b米为宽的长方形,根据长方形的面积可得草地部分所占的面积.
(4)结合图形可知,空白部分所占的面积=(a﹣2)米为长,(b﹣1)米为宽的长方形的面积.
(1)画图如下:
(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b
理由:1.将“小路”沿着左右两个边界“剪去”;2.将左侧的草地向右平移一个单位;3.得到一个新的矩形.在新得到的矩形中,其纵向宽仍然是b.其水平方向的长变成了a﹣1,所以草地的面积就是:b(a﹣1)=ab﹣b.
(3)∵纵向小路任何地方的水平宽度都是2个单位,∴空白部分表示的草地面积是(a﹣2)b;
(4)∵纵向小路任何地方的水平宽度都是2个单位,横向小路任何地方的宽度都是1个单位,∴空白部分表示的草地面积是(a﹣2)(b﹣1).
科目:初中数学 来源: 题型:
【题目】已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)证明:PE=PF;
(3)若PF=13,sinA= ,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).
(1)求二次函数的解析式并写出D点坐标;
(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非。”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律。
如:要解决上面问题,我们不妨先从特例入手:(统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的。请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,填空:
(1)若∠4=∠3,则____∥_____,理由是______;
(2)若∠2=∠E,则____∥___,理由是____;
(3)若∠A=∠ABE=180°,则____∥___,理由是____;
(4)若∠2=∠____,则DA∥EB,理由是____;
(5)若∠DBC+∠_____=180°,则DB∥EC,理由是____;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边CD恰好与边AB平行.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4),以A为顶点的抛物线y=ax2+bx+c过点C,动点P从点A出发,以每秒 个单位的速度沿线段AD向点D运动,运动时间为t秒,过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C,Q,N,H为顶点的四边形为菱形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,直线y=kx+b与x轴正半轴交于点A,与y轴负半轴交于点B,圆心P在x轴的正半轴上,已知AB=10,AP=
(1)求点P到直线AB的距离;
(2)求直线y=kx+b的解析式;
(3)在图②中存在点Q,使得∠BQO=90°,连接AQ,请求出AQ的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数(x>0)的图像与△ABC有公共点,则k的取值范围是( )
A. 2≤k≤9 B. 2≤k≤8 C. 2≤k≤5 D. 5≤k≤8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com