| A. | 12 | B. | 9 | C. | 8 | D. | 6 |
分析 设B点坐标为(a,b),根据等腰直角三角形的性质得OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,则OA2-AB2=18变形为AC2-AD2=9,利用平方差公式得到(AC+AD)(AC-AD)=9,所以(OC+BD)•CD=9,则有a•b=9,根据反比例函数图象上点的坐标特征易得k=9.
解答 解:设B点坐标为(a,b),
∵△OAC和△BAD都是等腰直角三角形,
∴OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,
∵OA2-AB2=18,
∴2AC2-2AD2=18,即AC2-AD2=9,
∴(AC+AD)(AC-AD)=9,
∴(OC+BD)•CD=9,
∴a•b=9,
∴k=9.
故选:B.
点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
科目:初中数学 来源: 题型:选择题
| A. | 30(1+x)2=120 | B. | 30+30×2x=120 | ||
| C. | 30(1+x%)2=120 | D. | 30+30(1+x)+30(1+x)2=120 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x-y=5}\\{x+y=20}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{y-(x-y)=5}\\{x+(x-y)=20}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x-(x-y)=5}\\{y+(x-y)=20}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{y-(x-y)=10}\\{x+(x-y)=25}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com