精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD= ,求AD的长.

【答案】
(1)证明:∵AD⊥BC,∠BAD=45°,

∴△ABD是等腰直角三角形,

∴AD=BD,

∵BE⊥AC,AD⊥BC

∴∠CAD+∠ACD=90°,

∠CBE+∠ACD=90°,

∴∠CAD=∠CBE,

在△ADC和△BDF中,

∴△ADC≌△BDF(ASA),

∴BF=AC,

∵AB=BC,BE⊥AC,

∴AC=2AE,

∴BF=2AE;


(2)解:∵△ADC≌△BDF,

∴DF=CD=

在Rt△CDF中,CF= = =2,

∵BE⊥AC,AE=EC,

∴AF=CF=2,

∴AD=AF+DF=2+


【解析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角板的直角顶点C叠放在一起.

(1)若DCB=35°,求ACB的度数;

(2)若ACB=140°,求DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某花卉种植基地欲购进甲、乙两种君子兰进行培育。若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l.则共需成本l500元。

(1)求甲、乙两种君子兰每株成本分别为多少元?

(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题:

(1)三条直线相交,最少有 个交点;最多有 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;

(2)四条直线相交,最少有 个交点;最多有 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;

(3)依次类推,n条直线相交,最少有 个交点;最多有 个交点,对顶角有 对,邻补角有 对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式一定成立的是(  )
A.aa2=a2
B.a2÷a=2
C.2a2+a2=3a4
D.a3=a3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)

(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是

(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;

(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(﹣2a32的结果是(
A.﹣4a5
B.4a5
C.﹣4a6
D.4a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B

(1)若直线y=mx+n经过BC两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

同步练习册答案