精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠ABC=90°,BDAC边上的中线.

(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CEBC于点C,交BD的延长线于点E,连接AE;

(2)求证:四边形ABCE是矩形.

【答案】(1)见解析;(2)见解析.

【解析】

1)根据题意作图即可;
(2)先根据BDAC边上的中线,AD=DC,再证明ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.

(1)解:如图所示:E点即为所求;

(2)证明:∵CEBC,

∴∠BCE=90°,

∵∠ABC=90°,

∴∠BCE+ABC=180°,

ABCE,

∴∠ABE=CEB,BAC=ECA,

BDAC边上的中线,

AD=DC,

ABDCED

∴△ABD≌△CED(AAS),

AB=EC,

∴四边形ABCE是平行四边形,

∵∠ABC=90°,

∴平行四边形ABCE是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元。

1)第一批手机壳的进货单价是多少元?

2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:O是直线AB上的一点,是直角,OE平分

(1)如图1.若.求的度数;

(2)在图1中,,直接写出的度数(用含a的代数式表示);

(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究的度数之间的关系.写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点A、B、Cx轴上,点D、Ey轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.

(1)求经过B、E、C三点的抛物线的解析式;

(2)若点P线段FG上一个动点(与F、G不重合),当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,请求出此时点P的坐标;

(3)若点P直线FG上一个动点,Q为抛物线上任一点,抛物线的顶点为N,探究以P、Q、M、N为顶点的四边形能否成为平行四边形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为( )

A. 2 B. +2 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).

(1)求点B的坐标.

(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.

(3)求平行四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.

1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?

2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图()为一条拉直的细线,两点在上,且 若先固定点,将折向 ,使得重迭在BP上,如图();再从图()点及与点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场.共举行比赛场,则参加比赛的球队共有________支.

查看答案和解析>>

同步练习册答案