【题目】如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,,,其中a、b满足关系式:.
______,______,的面积为______;
如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于
如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由.
【答案】(1);;6;(2)证明见解析;(3),理由见解析.
【解析】
(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;
(2)根据等角的余角相等解答即可;
(3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题;
【解答】(1)解:如图1中,
∵|a+4|+(b-a-1)2=0,
∴a=-4,b=-3,
∵点C(0,-4),D(-3,-4),
∴CD=3,且CD∥x轴,
∴△BCD的面积=×4×3=6;
故答案为-4,-3,6.
(2)如图2中,
∵∠CPQ=∠CQP=∠OPB,AC⊥BC,
∴∠CBQ+∠CQP=90°,
又∵∠ABQ+∠CPQ=90°,
∴∠ABQ=∠CBQ,
∴BQ平分∠CBA.
(3)如图3中,结论:∠BEC=2∠BCO.
理由:∵AC⊥BC,
∴∠ACB=90°,
∴∠ACD+∠BCF=90°,
∵CB平分∠ECF,
∴∠ECB=∠BCF,
∴∠ACD+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠ACD=∠ACE,
∴∠DCE=2∠ACD,
∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,
∴∠ACD=∠BCO,
∵C(0,-4),D(-3,-4),
∴CD∥AB,
∠BEC=∠DCE=2∠ACD,
∴∠BEC=2∠BCO,
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.
(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;
(2)求两次抽取的卡片上的数字之和为非负数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的BF方向移动,距离台风中心200 km的范围内是受台风影响的区域.
(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h) 之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为 km;(2)线段AB的解析式为 ;线段OC的解析式为 .(3)设快、慢车之间的距离为y(km),请直接写出y与行驶时间x(h)的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如果AD=5,AE=4,求AC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;
(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为 ,求添加的白球个数x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,O是AC上一动点(不与点A、C重合),过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)OE与OF相等吗?证明你的结论;
(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com