精英家教网 > 初中数学 > 题目详情
8.已知函数y=$\frac{6}{x}$-1与函数y=kx交于点A(2,b)、B(-3,m)两点(点A在第一象限),
(1)求b,m,k的值;
(2)函数与x轴交于点C,求△ABC的面积.

分析 (1)把点A(2,b),B(-3,m)代入函数的解析式即可得到结果;
(2)先求出函数y=$\frac{6}{x}$-1与x轴交点C,即可求得结果.

解答 解:(1)∵点A(2,b),B(-3,m)在y=$\frac{6}{x}$-1上,
∴$\left\{\begin{array}{l}{b=\frac{6}{2}-1}\\{m=\frac{6}{-3}-1}\end{array}\right.$,解得b=2,m=-3,
∴把A(2,2)代入y=kx,
∴k=1;

(2)∵函数y=$\frac{6}{x}$-1与x轴交于点C,
∴C(6,0),
∴S△ABC=S△AOC+S△BOC=$\frac{1}{2}$×6×2$+\frac{1}{2}×6×3$=15.

点评 本题考查了一次函数和反比例函数的交点问题,三角形的面积的求法,求点的坐标,正确的识别图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.已知关于x的一元二次方程x2+3x+m-1=0的两个实数根为x1、x2,若2(x1+x2)+x1x2+10=0,则m为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若三角形的三边长分别为3,4,x,则x的值可能是(  )
A.1B.6C.7D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知一次函数y=kx+b的图象与直线y=-$\sqrt{3}$x平行且经过点(2,-$\sqrt{3}$),与x轴、y轴分别交于A,B两点.
(1)求此一次函数的解析式;
(2)过坐标原点O作OC⊥AB交AB于点C,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在菱形ABCD中,AB=10,sinA=$\frac{4}{5}$,点E在AB上,AE=4,过点E作EF∥AD,交CD于点F.
(1)请写出菱形ABCD的面积:80;
(2)若点P从点A出发以1个单位长度/秒的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位长度/秒的速度沿着线段EF向终点F运动,设运动时间为t(秒).
①当t=5时,求PQ的长;
②以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为相切.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CEF=∠CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=$\sqrt{3}$,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是(22016,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是(  )
A.60°B.48°C.30°D.24°

查看答案和解析>>

同步练习册答案