精英家教网 > 初中数学 > 题目详情

【题目】勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了两枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理,如图的勾股图中,已知.作四边形,满足点在边上,点分别在边上,是直线的交点.那么的长等于(  )

A.B.C.D.

【答案】A

【解析】

先根据勾股定理求出BC的长,双向延长线段ABPM于点O,交QN于点R,则AOMPBRQN,如图1,然后根据平角的定义、直角三角形的性质和等量代换可得∠4=5,根据SAS易证△ABC≌△DFC,可得DF=AB=5,∠6=1,∠8=5,进而可得∠7=4,于是有PD=PE,作PSDE于点S,如图2,则在RtPDS中,利用三角函数的知识可求出PD的长,作QWFG于点W,同理可求出FQ的长,进一步即可求出结果.

解:在△ABC中,∵

双向延长线段ABPM于点O,交QN于点R,则AOMPBRQN,如图1

由题意得:∠1+2=90°,∠3+2=90°,∠3+4=90°,∠1+5=90°

∴∠4=5

AC=DC,∠ACB=DCF=90°CF=CB

∴△ABC≌△DFCSAS),

DF=AB=5,∠6=1,∠8=5

∵∠6+7=90°,∠6+8=90°

∴∠7=8

∴∠7=4

PD=PE

PSDE于点S,如图2,则

RtPDS中,

同理可得:QF=QG,∠9=1

QWFG于点W,则

RtFQW中,

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科普小组有5名成员,身高(单位:cm)分别为:160165170163172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )

A.平均数变小,方差变小B.平均数变大,方差变大

C.平均数变大,方差不变D.平均数变大,方差变小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图,在△ABD中,BABD.在BD的延长线上取点EC,作△AEC,使EAEC,若∠BAE90°,∠B45°,求∠DAC的度数.

答案:∠DAC=45°

思考:(1)如果把以上“问题”中的条件“∠B45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;

2)如果把以上“问题”中的条件“∠B45°”去掉,再将“∠BAE90°”改为“∠BAEn°”,其余条件不变,求∠DAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,与轴交于,与轴交于,且

1)求一次函数与反比例函数的解析式;

2)直接写出不等式:的解集;

3轴上一动点,直接写出叫的最大值和此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车经营店销售型,型两种品牌自行车,今年进货和销售价格如下表:(今年1年内自行车的售价与进价保持不变)

型车

型车

进货价格(/)

1000

1100

销售价格(/)

1500

今年经过改造升级后,型车每辆销售价比去年增加400元.已知型车去年1月份销售总额为3.6万元,今年1月份型车的销售数量与去年1月份相同,而销售总额比去年1月份增加

1)若设今年1月份的型自行车售价为/辆,求的值?(用列方程的方法解答)

2)该店计划8月份再进一批型和型自行车共50辆,且型车数量不超过型车数量的2倍,应如何进货才能使这批自行车获利最多?

3)该店为吸引客源,准备增购一种进价为500元的型车,预算用8万元购进这三种车若干辆,其中型与型的数量之比为,则该店至少可以购进三种车共多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,PQ是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OFON交于点B、点C,连接ABPB

1)如图1,当PQ两点都在射线ON上时,请直接写出线段ABPB的数量关系;

2)如图2,当PQ两点都在射线ON的反向延长线上时,线段ABPB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

3)如图3MON=60°,连接AP,设=k,当PQ两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明AOB≌△PQB即可解决问题;

2)存在.证明方法类似(1);

3)连接BQ.只要证明ABP∽△OBQ,即可推出=,由AOB=30°,推出当BAOM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:解:(1)连接:AB=PB.理由:如图1中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MON∴∠AOB=∠BQOOA=PQ∴△AOB≌△PQBAB=PB

2)存在,理由:如图2中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MONBOQ=∠FON∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOBOA=PQ∴△AOB≌△PQBAB=PB

3)连接BQ

易证ABO≌△PBQ∴∠OAB=BPQAB=PB∵∠OPB+BPQ=180°∴∠OAB+OPB=180°AOP+ABP=180°∵∠MON=60°∴∠ABP=120°BA=BP∴∠BAP=BPA=30°BO=BQ∴∠BOQ=BQO=30°∴△ABP∽△OBQ =∵∠AOB=30°BAOM时, 的值最小,最小值为0.5k=0.5

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

型】解答
束】
28

【题目】如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PHy轴,垂足为H,连接AC.

求证:ACD是直角三角形;

试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.

(1)求证:ECF∽△GCE;

(2)求证:EG是O的切线;

(3)延长AB交GE的延长线于点M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EF分别在边ADCD上,AFBE相交于点G,若AE=3ED,DF=CF,则的值是  

A. B. C. D.

查看答案和解析>>

同步练习册答案