【题目】已知正方形ABCD的对角线AC,BD相交于点O.
(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;
(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,
①求证:∠ODG=∠OCE;
②当AB=1时,求HC的长.
【答案】(1)证明见解析;(2)①证明见解析;②
【解析】试题分析:(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;
(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;
②设CH=x,由△CHE∽△DCH,可得,即HC2=EHCD,由此构建方程即可解决问题;
试题解析:(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.
(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.
②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴,∴HC2=EHCD,∴x2=(1﹣x)1,解得x=或(舍弃),∴HC=.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求点A,点B和点D的坐标;
(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在,请求出点P的坐标;
(3)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,MNB的面积最大,试求出最大面积.
(备用图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(-4,3),点B(-4,0),OA=5,以点O为直角顶点,点C在第一象限内,作等腰直角△AOC.
(1)直接写出点C坐标:
(2)直接写出四边形ABOC的面积:
(3)在y轴找一点P,使得△BOP的面积等于四边形ABOC的面积,请直接写出点P坐标:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.
(1)列式表示广场空地的面积.
(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).
(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店出售A、B两种商品,一月份这两种商品的利润都是10万元,后因某种原因确定增加出售A种商品的数量,使A种商品每月利润的增长率都为a,同时减少B种商品的数量,使B种商品每月利润减少的百分率也都是a,(1)分别求出二月份出售A和B两种商品的利润是多少万元?(2)求出三月份出售A、B两种商品的总利润是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和直线CD相交于点O,OF平分∠COE,过点O作OG⊥OF.
(1)若∠AOE=80°,∠COF=22°,则∠BOD= ;
(2)若∠COE=40°,试说明:OG平分∠DOE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com