【题目】如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求点A,点B和点D的坐标;
(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在,请求出点P的坐标;
(3)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,MNB的面积最大,试求出最大面积.
(备用图)
【答案】见解析
【解析】试题分析:(1)已知抛物线的一般式,令y=0,可得关于x的方程,解方程可得抛物线与x轴交点的横坐标,从而得到A、B两点坐标,通过配方可得到抛物线的对称轴,从而可得点D的坐标;
(2)先求出BC的长,然后分情况进行讨论即可得;
(3)设点M运动的时间为ts,用含t的式子先表示出BM与DN的长,然后利用三角形的面积公式表示出△MNB的面积,再根据二次函数的性质即可得.
试题解析:(1)当y=0时,x2-4x+3=0.
解得x1=1,x2=3,
∵点B在点A的右侧,∴点A的坐标为(1,0),点B的坐标为(3,0),
∵y=x2-4x+3=(x-2)2-1,
∴点D的坐标为(2,0);
(2)存在一点P,使△PBC为等腰三角形,
当x=0加法,y=x2-4x+3=3,∴点C的坐标为(0,3),
∴BC=,
点P中y轴上,当△PBC为等腰三角形时分三种情况讨论,点P位置如图,
①当CP=CB时,PC=3,
∴OP=OC+PC=3+3 或OP=PC-OC=3-3.
∴P1(0,3+3),P2(0,3-3);
②当BP=BC时,OP=OC=3,
∴P3(0,-3);
③当PB=PC时,
∵OC=OB=3,
∴此时点P与点O重合.
∴P4(0,0),
综上所述,当点P的坐标为(0,3+3)或(0,3-3)或(0,-3)或(0,0)时,△PBC为等腰三角形;
(3)设点M运动的时间为ts,
∵AB=2,∴BM=2-t,DN=2t,
∴S△MNB==-t2+2t=-(t-1)2+1,
∴当t=1时,△MNB的面积最大,最大面积为1,
此时M(2,0),N(2,2)或(2,-2),
∴当点M运动到(2,0),点N运动到(2,2)或(2,-2)时,△MNB的面积最大,最大面积为1.
科目:初中数学 来源: 题型:
【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】试题分析:(1)原式利用单项式乘以多项式法则计算即可得到结果;
(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;
(3)先根据幂的乘方的逆运算,把(-)2 016化为()1008,再根据积的乘方的逆运算计算即可.
试题解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【题型】解答题
【结束】
19
【题目】如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出△ABC关于直线BM对称的△A1B1C1;
(2)写出AA1的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,E、F分别是BC、AC的中点,延长BA到点D,使2AD=AB.连接DE,DF.
(1)求证:AF与DE互相平分;
(2)若BC=4,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形ABCD,对角线交点为O,延长CD至E且CD=DE.下列判断正确个数是( )
(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,BD=OB,∠CAB=30°,请根据已知条件和图形,写出三个正确的结论(AO=BO=BD除外)________;_____________;____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的对角线AC,BD相交于点O.
(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;
(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,
①求证:∠ODG=∠OCE;
②当AB=1时,求HC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com