【题目】如图,四边形ABCD为矩形,O为AC中点,过点O作AC的垂线分别交AD、BC于点E、F,连接AF、CE.
(1)求证:四边形AFCE是菱形;
(2)若AC=8,EF=6,求BF的长.
科目:初中数学 来源: 题型:
【题目】如图,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.
(1)将△ACB绕点B顺时针方向旋转,在方格图中用直尺画出旋转后对应的△A1C1B,则A1点的坐标是(_________),C1点的坐标是(_________).
(2)在方格图中用直尺画出△ACB关于原点O的中心对称图形△A2C2B2,则A2点的坐标是(_________),C2点的坐标是(_________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:
摸球总次数 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
摸到红球的频数 | 17 | 32 | 44 | 64 | 78 |
| 103 | 122 | 136 | 148 |
摸到红球的频率 | 0.34 | 0.32 | 0.293 | 0.32 | 0.312 | 0.32 | 0.294 |
| 0.302 |
|
(1)请将表格中的数据补齐;
(2)根据上表,完成折线统计图;
(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把下面的证明补充完整:
如图,已知直线EF分别交直线AB、CD于点M、N,AB∥CD,MG平分∠EMB,NH平分∠END.求证:MG∥NH
证明:∵AB∥CD(已知)
∴∠EMB=∠END( )
∵MG平分∠EMB,NH平分∠END(已知),
∴∠EMG=∠EMB,∠ENH=∠END( ),
∴ (等量代换)
∴MG∥NH( ).
(2)你在第(1)小题的证明过程中,应用了哪两个互逆的真命题?请直接写出这一对互逆的真命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( ).
①作出AD的依据是SAS;②∠ADC=60°
③点D在AB的中垂线上;④S△DAC:S△ABD=1:2.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=5,求△ADE的周长.
(2)若∠BAD+∠CAE=60°,求∠BAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )
A.12B.12C.6D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com