精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,边ABAC的垂直平分线分别交BCDE

1)若BC=5,求ADE的周长.

2)若∠BAD+CAE=60°,求∠BAC的度数.

【答案】15;(2120°

【解析】

1)根据线段垂直平分线的性质得到DA=DBEA=EC,则△ADE的周长=AD+DE+EA=BC,即可得出结论;

2)根据等边对等角,把∠BAD+CAE=60°转化为∠B+C=60°,再根据三角形内角和定理即可得出结论.

1)∵边ABAC的垂直平分线分别交BCDE,∴DA=DBEA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5

2)∵DA=DBEA=EC,∴∠DAB=B,∠EAC=C,∴∠BAD+CAE=B+C=60°,∴∠BAC=180°-(∠B+C=180°-60°=120°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知开口向上的抛物线yax2bxc,它与x轴的两个交点分别为(10),(30).对于下列命题:①b2a=0abc>0a2b4c08ac0.其中正确的有

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(6分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.

(1)线段A1B1的长是   ;∠AOB1的度数是   

(2)连接AA1,求证:四边形OAA1B1是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,OAC中点,过点OAC的垂线分别交ADBC于点EF,连接AFCE

1)求证:四边形AFCE是菱形;

2)若AC=8EF=6,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于AB两点,与反比例函数y2=的图象分别交于CD两点,点D23),点B是线段AD的中点.

1)求一次函数y1=k1x+b与反比例函数y2=的解析式;

2)求COD的面积;

3)直接写出时自变量x的取值范围.

4)动点P0m)在y轴上运动,当的值最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

如图①是⊙的两条弦, 的中点, ,垂足为

求证:

小敏在解答此题时,利用了补短法进行证明,她的方法如下:

如图②,延长,使,连接

(请你在下面的空白处完成小敏的证明过程.)

推广运用

如图③,等边内接于⊙ 上一点, ,垂足为,则的周长是__________

拓展研究

如图④,若将问题提出中的的中点改成的中点其余条件不变,这一结论还成立吗?若成立,请说明理由;若不成立,写出三者之间存在的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是(  )

A. 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率

B. 掷一枚质地均匀的硬币,正面朝上的概率

C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率

D. 任意买一张电影票,座位号是2的倍数的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.

(1)分别写出下列各点的坐标:A′ B′ ;C′

(2)说明△A′B′C′由△ABC经过怎样的平移得到?

(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为

(4)求△ABC的面积.

查看答案和解析>>

同步练习册答案