【题目】有一根长的金属棒,欲将其截成根长的小段和根长的小段,剩余部分作废料处理,若使废料最少,则正整数应分别为( )
【答案】B
【解析】根据题意得:7x+9y≤40,
则
∵40-9y≥0且y是非负整数,
∴y的值可以是:0或1或2或3或4.
当x的值最大时,废料最少,
因而当y=0时,x≤40/7 ,则x=5,此时,所剩的废料是:40-5×7=5mm;
当y=1时,x≤31/7 ,则x=4,此时,所剩的废料是:40-1×9-4×7=3mm;
当y=2时,x≤22/7 ,则x=3,此时,所剩的废料是:40-2×9-3×7=1mm;
当y=3时,x≤13/7 ,则x=1,此时,所剩的废料是:40-3×9-7=6mm;
当y=4时,x≤4/7 ,则x=0,此时,所剩的废料是:40-4×9=4mm.
则最小的是:x=3,y=2.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=56°,∠C=42°,则∠DAE的度数为( )
A. 3°B. 7°C. 11°D. 15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距100千米,甲,乙两人骑车同时分别从A、B两地相向而行,假设他们都保持匀速行驶,直线l1,l2分别表示甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间关系的图象.
根据图象提供的信息,解答下列问题:
(1)甲、乙两人的速度分别是多少?
(2)经过多长时间,两人相遇?
(3)分别写出甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.
(1)线段A1B1的长是 ;∠AOB1的度数是 .
(2)连接AA1,求证:四边形OAA1B1是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副直角三角尺如图①叠放,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,要求两块三角尺的一组边互相平行.如图②,当∠BAD=15°时,有一组边BC∥DE,请再写出两个符合要求的∠BAD(0°<∠BAD<180°)的度数_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,O为AC中点,过点O作AC的垂线分别交AD、BC于点E、F,连接AF、CE.
(1)求证:四边形AFCE是菱形;
(2)若AC=8,EF=6,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
如图①,、是⊙的两条弦, , 是的中点, ,垂足为.
求证: .
小敏在解答此题时,利用了“补短法”进行证明,她的方法如下:
如图②,延长至,使,连接、、、、.
(请你在下面的空白处完成小敏的证明过程.)
推广运用
如图③,等边内接于⊙, . 是上一点, , ,垂足为,则的周长是__________.
拓展研究
如图④,若将“问题提出”中的“是的中点”改成“是的中点”,其余条件不变,“”这一结论还成立吗?若成立,请说明理由;若不成立,写出、、三者之间存在的关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字.小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束后得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏后得到的一组数恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com