【题目】如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.
【答案】60或120.
【解析】
先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.
如图,连接OC,OD,BC,BD,AC,AD,
∵AB为⊙O的直径,AB=4,
∴OB=2,
又∵OP=1,
∴BP=1,
∵CD⊥AB,
∴CD垂直平分OB,
∴CO=CB,DO=DB,
又OC=OD,
∴OC=CB=DB=OD,
∴四边形ODBC是菱形,
∴∠COD=∠CBD,
∵∠COD=2∠CAD,
∴∠CBD=2∠CAD,
又∵四边形ADBC是圆内接四边形,
∴∠CAD+∠CBD=180°,
∴∠CAD=60°,∠CBD=120°,
∵弦CD所对的圆周角有∠CAD和∠CBD两个,
故答案为:60或120.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=x2-2x,直线y2=-2x+b相交于A,B两点,其中点A的横坐标为2.当x任取一值时,x对应的函数值分别为y1,y2,取m=(|y1-y2|+y1+y2).则
A. 当x<-2时,m=y2.B. m随x的增大而减小.
C. 当m=2时,x=0.D. m≥-2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O 的半径长为2,点C为直径AB的延长线上一点,且BC=2.过点C任作一条直线l.若直线l上总存在点P,使得过点P所作的⊙O 的两条切线互相垂直,则∠ACP的最大值等于__________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣2x+8与反比例函数(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于D点.
(1)求反比例函数的解析式.
(2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】胜利中学从全校学生中随机选取一部分学生,对他们每周上网的时间t进行调查,调查情况分为:小时;小时小时;小时小时;小时四种,并将统计结果制成了如下两幅不完整的统计图,请根据图中信息解答下列问题:
求参加调查的学生的人数;
求扇形图中组扇形的圆心角度数,并通过计算补全条形统计图;
在所调查的学生中,随机选取一名学生,求他每周上网时间大于小时的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=100m.请你帮小明计算他家到公路l的距离AD的长度?(精确到1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子里有3个相同的小球,将3个小球分别标示号码1、2、3,每次从盒子里随机取出1个小球且取后放回,预计取球10次.若规定每次取球时,取出的号码即为得分,则前八次的取球得分情况如下表所示
次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 |
(1)设第1次至第8次取球得分的平均数为,求的值:
(2)求事件“第9次和第10次取球得分的平均数等于”发生的概率;(列表法或树状图)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com