精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,CD是弦,且CDAB于点P,若AB4OP1,则弦CD所对的圆周角等于_____度.

【答案】60120

【解析】

先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出的度数.

如图,连接OCODBCBDACAD

AB为⊙O的直径,AB4

OB2

又∵OP1

BP1

CDAB

CD垂直平分OB

COCBDODB

OCOD

OCCBDBOD

∴四边形ODBC是菱形,

∴∠COD=∠CBD

∵∠COD2CAD

∴∠CBD2CAD

又∵四边形ADBC是圆内接四边形,

∴∠CAD+CBD180°

∴∠CAD60°,∠CBD120°

∵弦CD所对的圆周角有∠CAD和∠CBD两个,

故答案为:60120

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1x22x,直线y2=-2xb相交于AB两点,其中点A的横坐标为2.当x任取一值时,x对应的函数值分别为y1y2,取m(|y1y2|y1y2).则

A. x<-2时,my2B. mx的增大而减小.

C. m2时,x0D. m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O 的半径长为2,点C为直径AB的延长线上一点,且BC=2.过点C任作一条直线l.若直线l上总存在点P,使得过点P所作的⊙O 的两条切线互相垂直,则∠ACP的最大值等于__________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣2x+8与反比例函数(x0)的图象交于A(m6)B(3n)两点,与x轴交于D点.

1)求反比例函数的解析式.

2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】胜利中学从全校学生中随机选取一部分学生,对他们每周上网的时间t进行调查,调查情况分为:小时;小时小时;小时小时;小时四种,并将统计结果制成了如下两幅不完整的统计图,请根据图中信息解答下列问题:

求参加调查的学生的人数;

求扇形图中组扇形的圆心角度数,并通过计算补全条形统计图;

在所调查的学生中,随机选取一名学生,求他每周上网时间大于小时的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路lABAl的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=100m.请你帮小明计算他家到公路l的距离AD的长度?(精确到1m;参考数据tan31°≈0.60sin31°≈0.51cos31°≈0.86)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有3个相同的小球,将3个小球分别标示号码123,每次从盒子里随机取出1个小球且取后放回,预计取球10次.若规定每次取球时,取出的号码即为得分,则前八次的取球得分情况如下表所示

次数

1

2

3

4

5

6

7

8

9

10

得分

2

1

1

2

2

3

2

3

1)设第1次至第8次取球得分的平均数为,求的值:

2)求事件9次和第10次取球得分的平均数等于发生的概率;(列表法或树状图)

查看答案和解析>>

同步练习册答案