精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知函数y=ax2(a≠0)的图象上的点D,C与x轴上的点A(-5,0)和B(3,0)构成ABCD,DC与y轴的交点为E(0,6),试求a的值.

【答案】

【解析】

A(-5,0)和B(3,0)得出AB=8,进一步得出CD=AB=8,所以D点的横坐标为-4,再结合E(0,6),得出点D的纵坐标为6,代入D点坐标求得a的数值即可.

解:∵点A(-5,0)B(3,0),

AB=8.

∵四边形ABCD是平行四边形,

CD=8,CDAB.

又∵ABy轴,抛物线yax2的对称轴为y轴,∴CDy轴,

DECD=4,点DCE的纵坐标相同.

又∵点E的坐标为(0,6),

∴点D的坐标为(-4,6).

D(-4,6)代入yax2

解得a.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).

(1)根据上述数学模型计算:

喝酒后几时血液中的酒精含量达到最大值?最大值为多少?

=5时,y=45.求k的值.

(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则BCG的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知函数y=ax2(a≠0)的图象上的点D,C与x轴上的点A(-5,0)和B(3,0)构成ABCD,DC与y轴的交点为E(0,6),试求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:我们知道:点AB在数轴上分别表示有理数abAB两点之间的距离表示为AB,在数轴上AB两点之间的距离AB=|a-b|.所以式子|x3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.

根据上述材料,解答下列问题:

1)若|x3|=4,则x=______

2)式子|x3|=|x+1|,则x=______

3)若|x3|+|x+1|=9,借助数轴求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.

(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;

(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三边ABBCCA长分别为405060.其三条角平分线交于点O,则SABOSBCOSCAO=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边的边长为是边上的动点,交边于点,在边上取一点,使,连接

(1)请直接写出图中与线段相等的两条线段;(不再另外添加辅助线)

(2)探究:当点在什么位置时,四边形是平行四边形?并判断四边形是什么特殊的平行四边形,请说明理由;

(3)在(2)的条件下,以点为圆心,为半径作圆,根据与平行四边形四条边交点的总个数,求相应的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某快递公司计划购买A型和B型两种货车共8辆,其中每辆车的价格以及每辆车的运载量如下表:

A

B

价格(万元/台)

m

n

运载量(吨/车)

20

30

若购买A型货车1辆,B型货车3辆,共需67万元;若购买A型货车3辆,B型货车2辆,共需75万元.

1)求mn的值;

2)若每辆A型货车每月运载量500吨,每辆B型货车每月运载量750吨,为确保这8辆车每月的运载量总和不少于4750吨,且该公司购买A型和B型货车的总费用不超过124万元.请你设计一个方案,使得购车总费用最少.

查看答案和解析>>

同步练习册答案