【题目】如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;
(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.
【答案】(1)直线AB的解析式为y=﹣2x+4.(2)St2﹣t(2<t≤4).(3)t1=,H1(),t2=20﹣,H2(10﹣,4).
【解析】试题分析:(1)根据待定系数法即可得到;
(2)过点Q作QF//x轴交y轴于点F,有两种情况:当0<t<2时,PF=4﹣2t,当2<t≤4时,PF=2t﹣4,然后根据面积公式即可求得;
(3)由菱形的邻边相等即可得到.
试题解析:(1)∵C(2,4),
∴A(0,4),B(2,0),
设直线AB的解析式为y=kx+b,
∴,
解得
∴直线AB的解析式为y=﹣2x+4.
(2)如图2,过点Q作QF⊥y轴于F,
∵PE//OB,
∴
∴有AP=BQ=t,PE=t,AF=CQ=4﹣t,
当0<t<2时,PF=4﹣2t,
∴S=PEPF=×t(4﹣2t)=t﹣t2,
即S=﹣t2+t(0<t<2),
当2<t≤4时,PF=2t﹣4,
∴S=PEPF=×t(2t﹣4)=t2﹣t(2<t≤4).
(3)t1=,H1(,),
t2=20﹣8,H2(10﹣4,4).
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD为矩形,,,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.
(1)当点P在线段AB上运动了t秒时,__________________(用代数式表示);
(2)t为何值时,四边形PDEB是平行四边形:
(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1) 将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起, ∠AOB=∠DOC=90°.
①如图(1),若OD是∠AOB的平分线时,求∠BOD和∠AOC的度数.
②如图(2),若OD不是∠AOB的平分线,试猜想∠AOC与∠BOD的数量关系,并说明理由.
(2)如图(3),如果两个角∠AOB = ∠DOC= m°(0< m <90),直接写出∠AOC与∠BOD的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明解方程的过程,请你仔细阅读,并解答所提出的问题:
解:去括号,得
. (第一步)
移项,得
. (第二步)
合并同类项,得
. (第三步)
系数化为1,得
. (第四步)
(1)该同学解答过程从第_____步开始出错,错误原因是______________________;
(2)写出正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=165°,OD平分∠AOC.
(1)若∠AOD=50°,求∠BOC度数;
(2)若∠BOD=110°,那么OC是∠BOD的平分线吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.
(1)求证:∠BAD=∠DAE;
(2)若AB=6,AD=5,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个形状、大小完全相同的含有、的直角三角板如图①放置,、与直线重合,且三角板、三角板均可绕点逆时针旋转.
图① 图②
(1)直接写出的度数是______.
(2)如图②,在图①基础上,若三角板的边从处开始绕点逆时针旋转,转速为4.5度/秒,同时三角板的边从处开始绕点逆时针旋转,转速为0.5度/秒,(当转到与重合时,两三角板都停止转动),在旋转过程中,当与重合时,求旋转的时间是多少?
(3)在(2)的条件下,、、三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com