【题目】如图,△ABC为直角三角形,∠B=90°,AC边上取一点D,使CD=AB.分别过点C作CE⊥BC,过点D作DE⊥AC,CE,DE相交于E,连结AE.
(1)求证:△ABC≌△CDE;
(2)若∠AED=20°,求∠ACE的度数.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.
(1)当t=2时,△DPQ的面积为 cm2;
(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;
(3)运动过程中,当 A、P、Q、D四点恰好在同一个圆上时,求t的值;
(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作思考)画⊙和⊙的直径、弦,使,垂足为(如图1).猜想所画的图中有哪些相等的线段、相等的劣弧?(除外).
(1)猜想:① ;② ;③ .
操作:将图1中的沿着直径翻折,因为圆是轴对称图形,过圆心的任意一条直线都是它的对称轴,所以与重合,又因为,所以射线与射线重合(如图2),于是点与点重合,从而证实猜想.
(知识应用)图3是某品牌的香水瓶,从正面看上去(如图4),它可以近似看作割去两个弓形后余下的部分与矩形组合而成的图形(点在上),其中.
(2)已知⊙的半径为,,,,求香水瓶的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在“中秋”节前购进一种品牌月饼,每盒进价40元,超市规定每盒售价不得低于40元,根据以往销售经验,当售价定为每盒45元时,预计每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求每天的销售量(盒)与售价(元)之间的函数关系式;
(2)如果要保证超市每天的利润为7980元,又要尽量减少库存,超市每天应该销售多少盒月饼?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P为∠MAN边AM上一动点,⊙P切AN于点C,与AM交于点D(点D在点P的右侧),作DF⊥AN于F,交⊙O于点E.
(1)连接PE,求证:PC平分∠APE;
(2)若DE=2EF,求∠A的度数;
(3)点B为射线AN上一点,且AB=8,射线BD交⊙P于点Q,sin∠A=.在P点运动过程中,是否存在某个位置,使得△DQE为等腰三角形?若存在,求出此时AP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点、以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程与时间满足关系:(),乙以4的速度匀速运动,半圆的长度为21.
(1)甲运动4后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com