精英家教网 > 初中数学 > 题目详情

【题目】如图1,等腰直角中,过点的圆交于点,交于点,连结.

(1),分别求的长

(2)如图2,连结,若的面积为10,求

(3)如图3,在圆上取点使得(与点不重合),连结,且点的内心

①请你画出,说明画图过程并求的度数.

②设,若,求的内切圆半径长.

【答案】(1)DE=CE=(2)(3)①画图见解析;∠CDF=135°;②的内切圆半径为2

【解析】

1)由ACED四点共圆可得∠ADE90°,然后求出DEBEBC,再根据CE=BC-BE即可得出答案;

2)过点DDHCAH,过点DDGCBG G,设DG=x,根据45°等腰直角三角形性质可得DG=EG=BG=x,根据△ACD面积列出关于x的式子求出x值,再据此计算tanBCD

3)①过点的延长线于点,根据∠PFD=∠CFD,∠PCD=∠BCD,∠CPF90°即可求出∠CDF的度数;②过点DDGCBG,则DG为△CPF内切圆半径,先求出△CDE∽△DBF,根据相似三角形性质可得,然后求出BDDE,即可得出△CPF的内切圆半径长.

解:(1)

∵四边形内接于圆,

(2)过点,过点 ,设

, ,

的面积为10

解得(舍去)

(3)①∵,点的内心,

∴如图,过点的延长线于点

即为所求的三角形.

∵∠PFD=∠CFD,∠PCD=∠BCD,∠CPF90°

=

②过点,则内切圆半径

又∵

,即

的内切圆半径为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在趣味运动会定点投篮项目中,我校七年级八个班的投篮成绩单位:个分别为:24201920222320则这组数据中的众数和中位数分别是  

A. 22个、20 B. 22个、21 C. 20个、21 D. 20个、22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点Px0y0)到直线Ax+By+C=0A2+B2≠0)的距离公式为:d=

例如,求点P13)到直线4x+3y3=0的距离.

解:由直线4x+3y3=0知:A=4B=3C=3

所以P13)到直线4x+3y3=0的距离为:d==2

根据以上材料,解决下列问题:

1)求点P11-1)到直线3x4y5=0的距离.

2)已知:⊙C是以点C21)为圆心,1为半径的圆,⊙C与直线y=x+b相切,求实数b的值;

3)如图,设点P为问题2中⊙C上的任意一点,点AB为直线3x+4y+5=0上的两点,且AB=2,请求出ABP面积的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“走进中国数学史”为主题的知识竞赛活动,八、九年级各有200名学生参加竞赛,为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,数据如下:

八年级

91

89

77

86

71

九年级

84

93

66

69

76

51

97

93

72

91

87

77

82

85

88

81

92

85

85

95

90

88

67

88

91

88

88

90

64

91

96

68

97

99

88

整理上面数据,得到如下统计表:

成绩

人数

年级

八年级

1

1

3

7

8

九年级

0

4

2

8

6

样本数据的平均数、中位数、众数、方差如下表所示:

统计表

年级

平均数

中位数

众数

方差

八年级

83.85

88

91

127.03

九年级

83.95

87.5

99.45

根据以上信息,回答下列问题:

1)写出上表中众数的值.

2)试估计八、九年级这次选拔成绩80分以上的人数和.

3)你认为哪个年级学生的竞赛成绩较好?说明你的理由.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的港珠澳大桥是目前桥梁设计中广泛采用的斜拉桥,它用粗大的钢索将桥面拉住,为检测钢索的抗拉强度,桥梁建设方从甲、乙两家生产钢索的厂方各随机选取5根钢索进行抗拉强度的检测,数据统计如下(单位:百吨)

甲、乙两厂钢索抗拉强度检测统计表

钢索

1

2

3

4

5

平均数

中位数

方差

甲厂

10

11

9

10

12

10.4

10

1.04

乙厂

10

8

12

7

13

a

b

c

1)求乙厂5根钢索抗拉强度的平均数a(百吨)、中位数b(百吨)和方差c(平方百吨).

2)桥梁建设方决定从抗拉强度的总体水平和稳定性来决定钢索的质量,问哪一家的钢索质量更优?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点CCP的垂线,与PB的延长线交于点Q,已知:⊙O半径为,则CQ的最大值是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线yax2+bx+c的对称轴为直线x1,且过点(30),下列结论:abc0ab+c0③2a+b0b24ac0;正确的有(  )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BDAC的延长线交于点K,连接CD

1)求证:∠AKB﹣∠BCD45°

2)如图2,若DCDB时,求证:BC2CK

3)在(2)的条件下,连接BCAD于点E,过点CCFAD于点F,延长CFAB于点G,连接GE,若GE5,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

同步练习册答案