【题目】在平面直角坐标系中,已知正方形的顶点的坐标为,点的坐标为,顶点在第一象限内,抛物线(常数)的顶点为正方形对角线上一动点.
(1)当抛物线经过两点时,求抛物线的解析式;
(2)若抛物线与直线相交于另一点(非抛物线顶点,且在第一象限内),求证:长是定值;
(3)根据(2)的结论,取的中点,求的最小值.
【答案】(1)抛物线解析式为;
(2)证明见解析;
(3)最小值为.
【解析】
(1)把点和点坐标代入得到关于的方程组,然后解方程组即可;
(2)先利用正方形性质得到,再利用待定系数法求出直线的解析式为,再求出顶点的坐标为,然后把代入得到,设,,则为的两根,利用根与系数的关系得到,,然后利用两点间的距离公式计算,从而判定长是定值;
(3)取的中点,连接交于,如图,则,,则过点作的平行线交于,利用四边形为平行四边形得到,所以,利用两点之间线段最短判断此时的值最小,利用勾股定理可计算出它的最小值.
(1)解:把,代入
得,解得,
所以抛物线解析式为;
(2)证明:四边形为正方形,
而,
,
设直线的解析式为,
把,代入得,解得,
直线的解析式为,
,
顶点的坐标为,
把代入得的坐标,
即,
设,,
则为的两根,
整理为,
,,
,
,
即长是定值;
(3)取的中点,连接交于,如图,
,,
,
,
过点作的平行线交于,
四边形为平行四边形,
,
点与点关于对称,
,
,
此时的值最小,最小值为.
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①3a-c<0;② abc<0; ③点,,是该抛物线上的点,则; ④4a-2b≥at2+bt(t为实数);正确的个数有()个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=16,BC=4,D为AB上一点,DE⊥AC于点E,DE=1,P为CE上一动点,设CP的长为a.
(1)求CE的长;
(2)a为何值时,△DEP与△BCP相似?
(3)当PD+PB有最小值时,求a的值及最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
(1)函数y=自变量的取值范围是 ;
(2)下表列出了y与x的几组对应值:
x | … | ﹣2 | ﹣ | m | ﹣ | ﹣ | 1 | 2 | … | |||
y | … | 1 | 4 | 4 | 1 | … |
表中m的值是 ;
(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;
(4)结合函数y=的图象,写出这个函数的性质: .(只需写一个)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y=x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.
(1)求二次函数的解析式与顶点P坐标;
(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP=S△BCP,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,.点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接.
(1)的形状为______;
(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;
(3)当点落在边上时,若,请直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】上海首条中运量公交线路71路已正式开通.该线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米.71路车行驶于专设的公交车道,又配以专用的公交信号灯.经测试,早晚高峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟.求早晚高峰时段71路车在专用车道内行驶的平均车速.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com