【题目】反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B.当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是( )
A. B. C. D.
【答案】D
【解析】
①由点A、B均在反比例函数的图象上,利用反比例函数系数k的几何意义即可得出S△ODB=S△OCA,结论①正确;③利用分割图形求面积法即可得出S四边形PAOB=k-1,结论③正确;②设点P的坐标为,则点B的坐标,点A,求出PA、PB的长度,由此可得出PA与PB的关系无法确定,结论②错误;④设点P的坐标为,则点B的坐标,点A,由点A是PC的中点可得出k=2,将其带入点P、B的坐标即可得出点B是PD的中点,结论④正确.此题得解.
解:①∵点A、B均在反比例函数的图象上,且BD⊥y轴,AC⊥x轴,
∴
∴S△ODB=S△OCA,结论①正确;
②设点P的坐标为,则点B的坐标,点A,
∴
∴PA与PB的关系无法确定,结论②错误;
③∵点P在反比例函数的图象上,且PC⊥x轴,PD⊥y轴,
∴S矩形OCPD=k,
∴S四边形PAOB=S矩形OCPD-S△ODB-S△OCA=k-1,结论③正确;
④设点P的坐标为,则点B的坐标,点A,
∵点A是PC的中点,
∴k=2,
∴P,B,
∴点B是PD的中点,结论④正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】本学期初,某校为迎接中华人民共和国成立七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代“为主题的读书活动.德育处对八年级学生九月份“阅读该主题相关书籍的读书量”( 下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,绘制了两幅不完整的统计图(如图所示).
(1)请补全两幅统计图;本次所抽取学生九月份“读书量“的众数为 本;
(2)求本次所抽取学生九月份“读书量”的平均数;
(3)已知该校八年级有500名学生,请你估计该校八年级学生中,九月份“读书量“为5本的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图2表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图象.
(1)甲、丙两地间的路程为 千米;
(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;
(3)当行驶时间x为多少时,高速列车离乙地的路程是200千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点是斜边的中点.点从点出发以的速度向点运动,点同时从点出发以一定的速度沿射线方向运动,规定当点到终点时停止运动.设运动的时间为秒,连接、.
(1)填空:______;
(2)当且点运动的速度也是时,求证:;
(3)若动点以的速度沿射线方向运动,在点、点运动过程中,如果存在某个时间,使得的面积是面积的两倍,请你求出时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=14,∠B=45°,tanA=,点D为AB中点.动点P从点D出发,沿DA方向以每秒1个单位长度的速度向终点A运动,点P关于点D对称点为点Q,以PQ为边向上作正方形PQMN.设点P的运动时间为t秒.
(1)当t=______秒时,点N落在AC边上.
(2)设正方形PQMN与△ABC重叠部分面积为S,当点N在△ABC内部时,求S关于t的函数关系式.
(3)当矩形PQMN的对角线所在直线将△ABC的分为面积相等的两部分时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com