精英家教网 > 初中数学 > 题目详情
7.如图,抛物线y=x2+bx+c与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,请解答下列问题:
(1)求抛物线的解析式;
(2)点P在线段OC上,过点P与x轴平行的直线交AC于点M,交BC于点N,且MN=4,求线段ON的长.

分析 (1)根据待定系数法,可得函数解析式;
(2)根据相似三角形的判定与性质,可得CN与CB的关系,根据勾股定理,可得CB的长,根据直角三角形的性质,可得答案.

解答 解:(1)∵抛物线y=x2+bx+c经过点A(-2,0),点B(6,0),
∴$\left\{\begin{array}{l}{4-2b+c=0}\\{36+6b+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=-4}\\{c=-12}\end{array}\right.$.
∴抛物线的解析式为y=x2-4x-12;
(2)∵OA=2,OB=6,
∴AB=OA+OB=8.
∵MN∥AB,MN=4,
∴△CMN∽△CAB,
∴$\frac{MN}{AB}$=$\frac{CN}{CB}$=$\frac{4}{8}$,
∴$\frac{CN}{CB}$=$\frac{1}{2}$,
∴点N为CB的中点,
∵点C坐标为(0,-12)
∴OC=12,
在Rt△COB中,根据勾股定理得:
CB=$\sqrt{O{B}^{2}+O{C}^{2}}$=$\sqrt{{6}^{2}+1{2}^{2}}$=6$\sqrt{5}$,
∴ON=$\frac{1}{2}$BC=3$\sqrt{5}$.

点评 本题考查了二次函数综合题,利用待定系数法求函数解析式,利用相似三角形的判定与性质得出N为BC的中点是解题关键,又利用了勾股定理,直角三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.方程2x=10的解是x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=kx+12与y轴交于点P,与边OA交于点D,与边BC交于点E.
(1)若tan∠PDO=$\frac{3}{2}$,求k的值;
(2)在(1)的条件下,当直线y=kx+12绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在NO平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知,如图,反比例函数y=$\frac{k}{x}$的图象与一次函数y=x+b的图象交于点A(1,4),点B(m,-1),
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出不等式x+b>$\frac{k}{x}$的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F.
(1)如图①,请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?并证明.
(2)如图②,若点P在DC的延长线上,那么这三条线段的长度之间又具有怎样的数量关系?并注明;
(3)如图③,若点P在CD的延长线上呢?直接写出结论不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:求49的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在正方形ABCD中,对角线AC=6,点P是对角线AC上的一点,过点P作PF⊥AD,PE⊥CD,则PF+PE的值为(  )
A.3$\sqrt{2}$B.3C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为$\widehat{BD}$,则图中阴影部分的面积为(  )
A.$\frac{25}{12}$πB.$\frac{4}{3}$πC.$\frac{3}{4}$πD.$\frac{5}{12}$π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)求本次调查的学生人数;
(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;
(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.

查看答案和解析>>

同步练习册答案