精英家教网 > 初中数学 > 题目详情

【题目】在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是(

A.两人都对
B.两人都不对
C.甲对,乙不对
D.甲不对,乙对

【答案】A
【解析】解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′, ∴∠A=∠A′,∠B=∠B′,
∴△ABC∽△A′B′C′,
∴甲说法正确;
乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,


∴新矩形与原矩形不相似.
∴乙说法正确.
故选:A.
【考点精析】本题主要考查了相似三角形的判定的相关知识点,需要掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,不低于每件30元.经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该服装店销售这批秋衣日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB、CD为⊙O的直径,弦BE交CD于点F,连接DE交AB于点G,GO=GD.
(1)如图1,求证:DE=DF;

(2)如图2,作弦AK∥DC,AK交BE于点N,连接CK,求证:四边形KNFC为平行四边形;
(3)如图3,作弦CH,连接DH,∠CDH=3∠EDH,CH=2 ,BE=4 ,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.

(1)求点A的坐标及一次函数的解析式;
(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是 ,求从袋中取出黑球的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,按照三视图确定该几何体的侧面积是(图中尺寸单位:cm)(
A.40πcm2
B.65πcm2
C.80πcm2
D.105πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数 ,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2 , 则y1、y2必须满足(
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D。

(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为 ( )
A.平行四边形
B.菱形
C.矩形
D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形.
②求四边形AFF′D的两条对角线的长.

查看答案和解析>>

同步练习册答案