精英家教网 > 初中数学 > 题目详情

【题目】核潜艇作为三位一体核打击力量中的一种,对于一个国家来说,是水下核威慑的重要战略武器.我国的核潜艇发展迅速,多次出色完成了战略巡航任务.一次,某型号核潜艇在水下400米的处以600/分钟的速度向正东方向航行时,发现斜上方仰角为水面上处有一可疑船只正沿着相同航向航行,跟踪2分钟后到达处,再次测得可疑船只在仰角为处,请根据以上条件求出可疑船只航行的速度.(参考数据:

【答案】可疑船只航行的速度约为796/分钟.

【解析】

过点于点,过点的延长线于点,分别在直角ABC和直角DEF中利用53°30°的正切求出ACEF的长,进一步即可求出CF的长,问题即得解决.

解:过点于点,过点的延长线于点.

由题知.

.

(米).

(米/分钟).

答:可疑船只航行的速度约为796/分钟.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是(  )

用水量x(吨)

3

4

5

6

7

频数

1

2

5

4﹣x

x

A. 平均数、中位数 B. 众数、中位数 C. 平均数、方差 D. 众数、方差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的O上,BD与过点C的切线垂直于点DBDO交于点E

1)求证:BC平分∠DBA

2)连接AEAC,若cosABDOAm,请写出求四边形AEDC面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,分别在四条边上.,,

1)写出图中的相似三角形,并证明.

2)当时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ADBC内接于OABO的直径,对角线ABCD相交于点E

1)求证:∠BCD+ABD90°;

2)点GAC的延长线上,连接BG,交O于点QCACB,∠ABD=∠ABG,作GHCD,交DC的延长线于点H,求证:GQGH

3)在(2)的条件下,过点BBFAD,交CD于点FGH3CH,若CF4,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点Mx轴上,过点Mx轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为(  )

A.yB.yC.yD.y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共14辆,全部车辆一次能运输128吨沙石.

(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?

(2)随着工程的进展,车队需要一次运输沙石超过190吨,为了完成任务,准备新增购这两种卡车共7辆,车队最多新购买载重量为8吨的卡车多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的汉字听写大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:

成绩x(分)分数段

频数(人)

频率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

频数分布直方图

根据所给的信息,回答下列问题:

1m=________n=________

2)补全频数分布直方图;

3)这200名学生成绩的中位数会落在________分数段;

4)若成绩在90分以上(包括90分)为等,请你估计该校参加本次比赛的2000名学生中成绩是等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角△ABC中,AB=ACADBC边上的高,EAC中点.

(1)如图1,过点CCFABF点,连接EF.若∠BAD=20°,求∠AFE的度数;

(2)若M为线段BD上的动点(点M与点D不重合),过点CCNAMN点,射线ENAB交于P点.

①依题意将图2补全;

②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD

小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:

想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD

想法2:设∠MAD=α,∠DAC=β,只需用αβ表示出∠PEC,通过角度计算得∠APE=2α

想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……

请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)

查看答案和解析>>

同步练习册答案