精英家教网 > 初中数学 > 题目详情

【题目】如图,点C在以AB为直径的O上,BD与过点C的切线垂直于点DBDO交于点E

1)求证:BC平分∠DBA

2)连接AEAC,若cosABDOAm,请写出求四边形AEDC面积的思路.

【答案】1)证明见解析;(2S梯形AEDCm2.解题思路见解析.

【解析】

1)如图1中,连接OC,由CD是⊙O的切线,推出OCCD,由BDCD,推出OCBD,推出∠OCB=∠CBD,由OCOB,推出∠OCB=∠OBC,即可推出∠CBO=∠CBD

2)如图连接ACAE.易知四边形AEDC是直角梯形,求出CDAEDE利用梯形面积公式计算即可.

1)证明:如图1中,连接OC

CD是⊙O的切线,

OCCD,∵BDCD

OCBD

∴∠OCB=∠CBD

OCOB

∴∠OCB=∠OBC

∴∠CBO=∠CBD

BC平分∠DBA

2)解:如图连接ACAE

cosABD

∴∠ABD60°

由(1)可知,∠ABC=∠CBD30°

RtACB中,∵∠ACB90°,∠ABC30°AB2m

BCABcos30°m

RtABE中,∵∠AEB90°,∠BAE30°AB2m

BEABmAEm

RtCDB中,∵∠D90°,∠CBD30°BCm

CDBCmBDm

DEDBBEm

S梯形AEDCCD+AEDEm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在同一平面直角坐标系中,反比例函数y与二次函数y=-x2+2xc的图象交于点A(-1,m).

(1)mc的值;

(2)求二次函数图象的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DEBC于点E.

(1)试判断DE与⊙O的位置关系,并说明理由;

(2)过点DDFAB于点F,若BE=3,DF=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:AD是正△ABC的高,OAD上一点,⊙O经过点D,分别交ABACEF

1)求∠EDF的度数;

2)若AD6,求△AEF的周长;

3)设EFAD相较于N,若AE3EF7,求DN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点Bx轴上,AC=BC,过点BBDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个梯子AB2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了(  )米.

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,对角线ACBD交于点O,折叠正方形纸片 ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交ABAC于点EG.连接GF.则下列结论错误的是( )

A. AGD=112.5° B. 四边形AEFG是菱形 C. tan∠AED=2 D. BE=2OG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过对角线BD中点的直线交ADBC边于FE

1)求证:四边形BEDF是平行四边形;

2)当四边形BEDF是菱形时,写出EFBD的关系.

3)若∠A60°AB4BC6,四边形BEDF是矩形,求该矩形的面积.

查看答案和解析>>

同步练习册答案